zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A set-valued Ekeland’s variational principle in vector optimization. (English) Zbl 1157.49025
Summary: This paper deals with Ekeland’s variational principle for vector optimization problems. By using a set-valued metric, a set-valued perturbed map, and a cone-boundedness concept based on scalarization, we introduce an original approach to extending the well-known scalar Ekeland’s principle to vector-valued maps. As a consequence of this approach, we obtain an Ekeland’s variational principle that does not depend on any approximate efficiency notion. This result is related to other Ekeland’s principles proved in the literature, and the finite-dimensional case is developed via an ε-efficiency notion that we introduced in [Math. Methods Oper. Res. 64, No. 1, 165–185 (2006; Zbl 1117.90063); SIAM J. Optim. 17, No. 3, 688–710 (2006; Zbl 1119.49020)].

MSC:
49J53Set-valued and variational analysis
90C48Programming in abstract spaces
65K10Optimization techniques (numerical methods)