zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. (English) Zbl 1157.49313
Summary: Optimal control of general nonlinear nonaffine controlled systems with nonquadratic performance criteria (that permit state- and control-dependent time-varying weighting parameters), is solved classically using a sequence of linear-quadratic and time-varying problems. The proposed method introduces an “approximating sequence of Riccati equations” (ASRE) to explicitly construct nonlinear time-varying optimal state-feedback controllers for such nonlinear systems. Under very mild conditions of local Lipschitz continuity, the sequences converge (globally) to nonlinear optimal stabilizing feedback controls. The computational simplicity and effectiveness of the ASRE algorithm is an appealing alternative to the tedious and laborious task of solving the Hamilton-Jacobi-Bellman partial differential equation. So the optimality of the ASRE control is studied by considering the original nonlinear-nonquadratic optimization problem and the corresponding necessary conditions for optimality, derived from Pontryagin’s maximum principle. Global optimal stabilizing state-feedback control laws are then constructed. This is compared with the optimality of the ASRE control by considering a nonlinear fighter aircraft control system, which is nonaffine in the control. Numerical simulations are used to illustrate the application of the ASRE methodology, which demonstrate its superior performance and optimality.
49N10Linear-quadratic optimal control problems
49N90Applications of optimal control and differential games
93D15Stabilization of systems by feedback