zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A meshless method for solving an inverse spacewise-dependent heat source problem. (English) Zbl 1157.65444
Summary: In this paper an effective meshless and integration-free numerical scheme for solving an inverse spacewise-dependent heat source problem is proposed. Due to the use of the fundamental solution as basis functions, the method leads to a global approximation scheme in both spatial and time domains. The standard Tikhonov regularization technique with the generalized cross-validation criterion for choosing the regularization parameter is adopted for solving the resulting ill-conditioned system of linear algebraic equations. The effectiveness of the algorithm is illustrated by several numerical examples.
MSC:
65M32Inverse problems (IVP of PDE, numerical methods)
References:
[1]Hadamard, J.: Lectures on the Cauchy problem in linear partial differential equations, (1923) · Zbl 49.0725.04
[2]Cannon, J. R.; Pérez, E. S.: Uniqueness and stability of 3D heat sources, Inverse probl. 7, 57-62 (1991) · Zbl 0729.35144 · doi:10.1088/0266-5611/7/1/006
[3]Choulli, M.; Yamamoto, M.: Conditional stability in determining a heat source, J. inverse ill-posed probl. 12, 233-243 (2004) · Zbl 1081.35136 · doi:10.1515/1569394042215856
[4]Farcas, A.; Lesnic, D.: The boundary-element method for the determination of a heat source dependent on one variable, J. eng. Math. 54, 375-388 (2006) · Zbl 1146.80007 · doi:10.1007/s10665-005-9023-0
[5]Johansson, B. T.; Lesnic, D.: Determination of a spacewise dependent heat source, J. comput. Appl. math. 209, 66-80 (2007) · Zbl 1135.35097 · doi:10.1016/j.cam.2006.10.026
[6]Johansson, B. T.; Lesnic, D.: A variational method for identifying a spacewise-dependent heat source, IMA J. Appl. math. 72, No. 6, 748-760 (2007) · Zbl 1135.65034 · doi:10.1093/imamat/hxm024
[7]Johansson, B. T.; Lesnic, D.: A procedure for determining a spacewise dependent heat source and the initial temperature, Appl. anal. 87, 265-276 (2008) · Zbl 1133.35436 · doi:10.1080/00036810701858193
[8]Yi, Zh.; Murio, D. A.: Source term identification in 1-D IHCP, Comput. math. Appl. 47, 1921-1933 (2004) · Zbl 1063.65102 · doi:10.1016/j.camwa.2002.11.025
[9]Yi, Zh.; Murio, D. A.: Source term identification in 2-D IHCP, Comput. math. Appl. 47, 1517-1533 (2004)
[10]Yang, C. Y.: A sequential method to estimate the strength of the heat source based on symbolic computation, Int. J. Heat mass. Transfer 41, No. 14, 2245-2252 (1998) · Zbl 0921.73261 · doi:10.1016/S0017-9310(97)00312-8
[11]Yang, C. Y.: Solving the two-dimensional inverse heat source problem through the linear least-squares error method, Int. J. Heat mass transfer 41, No. 2, 393-398 (1998) · Zbl 0925.73047 · doi:10.1016/S0017-9310(97)00125-7
[12]Powell, M. D. J.: Radial basis functions for multivariable interpolation: a review, Numerical analysis, 223-241 (1987)
[13]Wu, Z.: Hermite – Birkhoff interpolation for scattered data by radial basis function, Approxim. theory appl. 8, No. 2, 1-10 (1992)
[14]Golberg, M. A.; Chen, C. S.: The method of fundamental solutions for potential hemholtz and diffusion problems, , 103-176 (1999) · Zbl 0945.65130
[15]Fairweather, G.; Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems, Adv. comput. Math. 9, No. 1 – 2, 69-95 (1998) · Zbl 0922.65074 · doi:10.1023/A:1018981221740
[16]Chen, W.; Hon, Y. C.: Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems, Comput. methods appl. Mech. eng. 192, 1859-1875 (2003) · Zbl 1050.76040 · doi:10.1016/S0045-7825(03)00216-0
[17]Chen, W.; Tanaka, M.: A meshless, integration-free, and boundary-only RBF technique, Comput. math. Appl. 43, No. 3 – 5, 379-391 (2002) · Zbl 0999.65142 · doi:10.1016/S0898-1221(01)00293-0
[18]Chen, J. T.; Chen, I. L.; Chen, K. H.; Lee, Y. T.; Yeh, Y. T.: A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function, Eng. anal. Boundary elements 28, 535-545 (2004) · Zbl 1130.74488 · doi:10.1016/S0955-7997(03)00106-1
[19]Kang, S. W.; Lee, J. M.; Kang, Y. J.: Vibration analysis of arbitrary shape membranes using non-dimensional dynamic influence function, J. sound vib. 221, No. 1, 117-132 (1999)
[20]Zhang, J. M.; Tanaka, M.; Matsumoto, T.: Meshless analysis of potential problems in three dimensions with the hybrid boundary node method, Int. J. Numer. meth. Eng. 59, 1147-1160 (2004) · Zbl 1048.65121 · doi:10.1002/nme.904
[21]Zhang, J. M.; Yao, Z. H.; Li, H.: A hybrid boundary node method, Int. J. Numer. meth. Eng. 53, 751-763 (2002)
[22]Young, D. L.; Chen, K. H.; Lee, C. W.: Novel meshless method for solving the potential problems with arbitrary domain, J. comput. Phys. 209, 290-321 (2005) · Zbl 1073.65139 · doi:10.1016/j.jcp.2005.03.007
[23]Jin, B.; Marin, L.: The method of fundamental solutions for inverse source problems associated with the steady-state heat conduction, Int. J. Numer. meth. Eng. 69, 1570-1589 (2007) · Zbl 1194.80101 · doi:10.1002/nme.1826
[24]Yan, L.; Fu, C. L.; Yang, F. L.: The method of fundamental solutions for the inverse heat source problem, Eng. anal. Boundary elements 32, 216-222 (2008)
[25]Hon, Y. C.; Wei, T.: A fundamental solution method for inverse heat conduction problem, Eng. anal. Boundary elements 28, 489-495 (2004) · Zbl 1073.80002 · doi:10.1016/S0955-7997(03)00102-4
[26]Hon, Y. C.; Wei, T.: Numerical computation for multidimensional inverse heat conduction problem, CMES: comput. Model. eng. Sci. 7, 119-132 (2005)
[27]Wei, T.; Hon, Y. C.; Ling, L.: Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators, Eng. anal. Boundary elements 31, 373-385 (2007) · Zbl 1195.65206 · doi:10.1016/j.enganabound.2006.07.010
[28]Marin, L.; Lesnic, D.: The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations, Comput. struct. 83, No. 4 – 5, 267-278 (2005) · Zbl 1088.35079 · doi:10.1016/j.mcm.2005.04.004
[29]Marin, L.; Lesnic, D.: The method of fundamental solutions for inverse boundary value problems associated with the two-dimensional biharmonic equation, Math. comput. Model. 42, 261-278 (2005) · Zbl 1088.35079 · doi:10.1016/j.mcm.2005.04.004
[30]Marin, L.; Lesnic, D.: The method of fundamental solutions for nonlinear functionally graded materials, Int. J. Solids struct. 44, 6878-6890 (2007) · Zbl 1166.80300 · doi:10.1016/j.ijsolstr.2007.03.014
[31]Mera, N. S.; Lesnic, D.: A three-dimensional boundary determination problem in potential corrosion damage, Comput. mech. 36, 129-138 (2005) · Zbl 1100.78022 · doi:10.1007/s00466-004-0647-0
[32]Jin, B.; Zheng, Y.: A meshless method for some inverse problems associated with the Helmholtz equation, Comput. meth. Appl. mech. Eng. 195, No. 19 – 22, 2270-2288 (2006) · Zbl 1123.65111 · doi:10.1016/j.cma.2005.05.013
[33]Wei, T.; Hon, Y. C.: Numerical differentiation by radial basis functions approximation, Adv. comput. Math. 27, 247-272 (2007) · Zbl 1138.65025 · doi:10.1007/s10444-005-9001-0
[34]Kupradze, V. D.: A method for the approximate solution of limiting problems in mathematical physics, USSR comput. Maths. math. Phys. 4, 199-205 (1964) · Zbl 0161.35802 · doi:10.1016/0041-5553(64)90092-8
[35]Johansson, B. T.; Lesnic, D.: A method of fundamental solutions for transient heat conduction, Eng. anal. Boundary elements 32, 697-703 (2008)
[36]Young, D. L.; Tsai, C. C.; Murugesan, K.; Fan, C. M.; Chen, C. W.: Time-dependent fundamental solutions for homogeneous diffusion problems, Eng. anal. Boundary elements 28, 1463-1473 (2004) · Zbl 1098.76622 · doi:10.1016/j.enganabound.2004.07.003
[37]Chantasiriwan, S.: Methods of fundamental solutions for time-dependent heat conduction problems, Int. J. Numer. meth. Eng. 66, 147-165 (2006) · Zbl 1124.80313 · doi:10.1002/nme.1549
[38]Hansen, P. C.: Rank-deficient and discrete ill-posed problems, (1998)
[39]Morozov, V. A.: Methods for solving incorrectly posed problems, (1984) · Zbl 0549.65031
[40]Engl, H. W.; Hanke, M.; Neubauer, A.: Regularization of inverse problems, mathematics, and its applications, Regularization of inverse problems, mathematics, and its applications 357 (1996)
[41]Tautenhahn, U.; Hämarik, U.: The use of monotonicity for choosing the regularization parameter in ill-posed problems, Inverse probl. 15, 1487-1505 (1999) · Zbl 0948.65057 · doi:10.1088/0266-5611/15/6/307
[42]Golub, G.; Heath, M.; Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21, No. 2, 215-223 (1979) · Zbl 0461.62059 · doi:10.2307/1268518