zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lévy flight superdiffusion: an introduction. (English) Zbl 1157.82300

Summary: After a short excursion from the discovery of Brownian motion to the Richardson “law of four thirds” in turbulent diffusion, the article introduces the Lévy flight superdiffusion as a self-similar Lévy process. The condition of self-similarity converts the infinitely divisible characteristic function of the Lévy process into a stable characteristic function of the Lévy motion. The Lévy motion generalizes the Brownian motion on the base of the α-stable distributions theory and fractional order derivatives.

Further development on this idea lies on the generalization of the Langevin equation with a non-Gaussian white noise source and the use of functional approach. This leads to the Kolmogorov’s equation for arbitrary Markovian processes. As a particular case we obtain the fractional Fokker–Planck equation for Lévy flights. Some results concerning stationary probability distributions of Lévy motion in symmetric smooth monostable potentials, and a general expression to calculate the nonlinear relaxation time in barrier crossing problems are derived. Finally, we discuss the results on the same characteristics and barrier crossing problems with Lévy flights, recently obtained by different approaches.

MSC:
82-01Textbooks (statistical mechanics)
82C32Neural nets (statistical mechanics)
82B41Random walks, random surfaces, lattice animals, etc. (statistical mechanics)