zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-vehicle consensus with a time-varying reference state. (English) Zbl 1157.90459
Summary: We study the consensus problem in multi-vehicle systems, where the information states of all vehicles approach a time-varying reference state under the condition that only a portion of the vehicles (e.g., the unique team leader) have access to the reference state and the portion of the vehicles might not have a directed path to all of the other vehicles in the team. We first analyze a consensus algorithm with a constant reference state using graph theoretical tools. We then propose consensus algorithms with a time-varying reference state and show necessary and sufficient conditions under which consensus is reached on the time-varying reference state. The time-varying reference state can be an exogenous signal or evolve according to a nonlinear model. These consensus algorithms are also extended to achieve relative state deviations among the vehicles. An application example to multi-vehicle formation control is given as a proof of concept.
MSC:
90B50Management decision making, including multiple objectives
93C85Automated control systems (robots, etc.)