zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A nonstandard dynamically consistent numerical scheme applied to obesity dynamics. (English) Zbl 1157.92028
Summary: The obesity epidemic is considered a health concern of paramount importance in modern society. In this work, a nonstandard finite difference scheme has been developed with the aim to solve numerically a mathematical model for obesity population dynamics. This interacting population model, represented as a system of coupled nonlinear ordinary differential equations, is used to analyze, understand, and predict the dynamics of obesity populations. The construction of the proposed discrete scheme is developed such that it is dynamically consistent with the original differential equations model. Since the total population in this mathematical model is assumed constant, the proposed scheme has been constructed to satisfy the associated conservation law and positivity condition. Numerical comparisons between the competitive nonstandard scheme developed here and Euler’s method show the effectiveness of the proposed nonstandard numerical scheme. Numerical examples show that the nonstandard difference scheme methodology is a good option to solve numerically different mathematical models where essential properties of the populations need to be satisfied in order to simulate the real world.
65L12Finite difference methods for ODE (numerical methods)
34A34Nonlinear ODE and systems, general