zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Superlinear problems without Ambrosetti and Rabinowitz growth condition. (English) Zbl 1158.35400
Summary: Superlinear elliptic boundary value problems without Ambrosetti and Rabinowitz growth condition are considered. Existence of nontrivial solution is established by combining some arguments used by Struwe and Tarantello and Schechter and Zou (also by Wang and Wei). Firstly, by using the mountain pass theorem due to Ambrosetti and Rabinowitz solution is constructed for almost every parameter λ by varying the parameter λ. Then, the continuation of the solutions is considered.

MSC:
35P30Nonlinear eigenvalue problems for PD operators; nonlinear spectral theory
35J20Second order elliptic equations, variational methods
35B38Critical points in solutions of PDE
35B60Continuation of solutions of PDE
35D05Existence of generalized solutions of PDE (MSC2000)
References:
[1]Ambrosetti, A.; Rabinowitz, P. H.: Dual variational methods in critical point theory and applications, J. funct. Anal. 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2]Costa, D. G.; Magalhães, C. A.: Variational elliptic problems which are nonquadratic at infinity, Nonlinear anal. 23, 1401-1412 (1994) · Zbl 0820.35059 · doi:10.1016/0362-546X(94)90135-X
[3]Jeanjean, L.: On the existence of bounded palais – Smale sequences and application to a landesman – lazer type problem set on RN, Proc. roy. Soc. Edinburgh sect. A 129, 787-809 (1999) · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[4]Palais, R. S.: Critical point theory and the minimax principle, Proc. sympos. Pure math. 15, 185-212 (1968) · Zbl 0212.28902
[5]Schechter, M.; Zou, W.: Superlinear problems, Pacific J. Math. 214, 145-160 (2004) · Zbl 1134.35346 · doi:10.2140/pjm.2004.214.145
[6]Struwe, M.; Tarantello, G.: On multivortex solutions in Chern – Simons gauge theory, Boll. unione mat. Ital. sez. B (8) 1, 109-121 (1998) · Zbl 0912.58046
[7]Szulkin, A.; Zou, W.: Homoclinic orbits for asymptotically linear Hamiltonian systems, J. funct. Anal. 187, 25-41 (2001) · Zbl 0984.37072 · doi:10.1006/jfan.2001.3798
[8]Wang, G.; Wei, J.: Steady state solutions of a reaction – diffusion system modeling chemotaxis, Math. nachr. 233 – 234, 221-236 (2002) · Zbl 1002.35049 · doi:10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.3.CO;2-D
[9]Willem, M.; Zou, W.: On a Schrödinger equation with periodic potential and spectrum point zero, Indiana univ. Math. J. 52, 109-132 (2003) · Zbl 1030.35068 · doi:10.1512/iumj.2003.52.2273
[10]Zhou, H. S.: Positive solution for a semilinear elliptic equations which is almost linear at infinity, Z. angew. Math. phys. 49, 896-906 (1998) · Zbl 0916.35036 · doi:10.1007/s000330050128