zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system. (English) Zbl 1158.35416

Summary: This paper concerns the sharp threshold of blowup and global existence of the solution as well as the strong instability of standing wave ϕ(t,x)=e iωt u(x) for the system:

iϕ t +Δϕ+a|ϕ| p-1 ϕ+bE 1 (|ϕ| 2 )ϕ=0,t0,x N ,( DS )

where a>0, b>0, 1<p<N+2 (N-2) + and N{2,3}. Firstly, by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we derive a sharp threshold for global existance and blowup of the solution to the Cauchy problem for (DS) provided 1+4 npN+2 (N-2) + . Secondly, by using the scaling argument, we show how small the initial data are for the global solutions to exist. Finally, we prove the strong instability of the standing waves with finite time blowup for any ω>0 by combining the former results.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35B40Asymptotic behavior of solutions of PDE
35B35Stability of solutions of PDE
35A15Variational methods (PDE)
References:
[1]Berestycki H. and Cazenave T. (1981). Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéairees. C. R. Acad. Sci. Paris 293: 489–492
[2]Cazenave, T.: An introduction to nonlinear Schrödinger equations. Textos de Métodos, Vol. 22, Rio de Janeiro: Instituto de Mathemática-UFRJ,1989
[3]Cazenave T. and Lions P.L. (1982). Orbital stability of standing waves for nonlinear Schrödinger equations. Commun. Math. Phys. 85: 549–561 · Zbl 0513.35007 · doi:10.1007/BF01403504
[4]Cipolatti R. (1992). On the existence of standing waves for a Davey-Stewartson system. Comm. P.D.E. 17: 967–988 · Zbl 0762.35109 · doi:10.1080/03605309208820872
[5]Cipolatti R. (1993). On the instability of ground states for a Davey-Stewartson system, Ann. Inst. Henri Poincaré. Phys. Théor. 58: 85–104
[6]Davey A. and Stewartson K. (1974). On three-dimensional packets of surface waves. Proc. R. Soc. London A 338: 101–110 · Zbl 0282.76008 · doi:10.1098/rspa.1974.0076
[7]Gan Z.H. and Zhang J. (2006). Sharp conditions of global existence for the generalized Davey-Stewartson system in three dimensional space. Acta Mathematica Scientia, Series A 26(1): 87–92
[8]Gan Z.H. and Zhang J. (2004). Sharp conditions of global existence for the generalized Davey-Stewartson system in two space dimensions. Math. Appl. 17(3): 360–365
[9]Gan Z.H. and Zhang J. (2004). Sharp conditions of global existence and collapse for coupled nonlinear Schrödinger equations. J. Part. Diff. Eqs. 17: 207–220
[10]Ginibre J. and Velo G. (1979). On a class of nonlinear Schrödinger equations. J. Funct. Anal. 32: 1–71 · Zbl 0396.35028 · doi:10.1016/0022-1236(79)90076-4
[11]Ginibre J. and Velo G. (1985). The global Cauchy problem for the nonlinear Schrödinger equation. Ann.Inst. H. Poincaré. Anal. Non Linéaire 2: 309–327
[12]Glassey R.T. (1977). On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys. 18(9): 1794–1797 · Zbl 0372.35009 · doi:10.1063/1.523491
[13]Grillakis M., Shatah J. and Strauss W.A. (1987). Stability theory of solitary waves in presence of symmetry I. J. Funct. Anal. 74: 160–197 · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[14]Ghidaglia J.M. and Saut J.C. (1990). On the initial value problem for the Davey-Stewartson systems. Nonlinearity 3: 475–506 · Zbl 0727.35111 · doi:10.1088/0951-7715/3/2/010
[15]Guo B.L. and Wang B.X. (1999). The Cauchy problem for Davey-Stewartson systems. Commun Pure Appl. Math. 52(12): 1477–1490 · doi:10.1002/(SICI)1097-0312(199912)52:12<1477::AID-CPA1>3.0.CO;2-N
[16]Levine H.A. (1974). Instability and non-existence of global solutions to nonlinear wave equations of the form Pu tt = u + F(u). Trans. Amer. Math. Soc. 192: 1–21
[17]Li Y.S., Guo B.L. and Jiang M.R. (2000). Global existence and blowup of solutions to a degenerate Davey-Stewartson equations. J. Math. Phys. 41(5): 2943–2956 · Zbl 0974.35115 · doi:10.1063/1.533282
[18]Lions P.L. (1984). The concentration-compactness principle in the calculus of variations, the locally compact case, Part I. Ann. Inst. H. Poincaré. Analyse non linéaire 1: 109–145
[19]Lions P.L. (1984). The concentration-compactness principle in the calculus of variations, the locally compact case, Part I. Ann. Inst. H. Poincaré. Analyse non linéaire 1: 223–283
[20]Ohta M. (1994). Stability of standing waves for the generalized Davey-Stewartson system, J. Dynam. Differ. Eqs. 6(2): 325–334 · Zbl 0805.35098 · doi:10.1007/BF02218533
[21]Ohta M. (1995). Instability of standing waves for the generalized Davey-Stewartson system. Ann. Inst. Henri Poincaré 62: 69–80
[22]Ohta M. (1995). Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in R 2. Ann. Inst. Henri Poincaré 63: 111–117
[23]Ozawa T. (1992). Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems. Proc. Roy. Soc. London Ser. A 436(1897): 345–349 · Zbl 0754.35114 · doi:10.1098/rspa.1992.0022
[24]Payne L.E. and Sattinger D.H. (1975). Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22(3-4): 273–303 · Zbl 0317.35059 · doi:10.1007/BF02761595
[25]Rabinowitz P. H. (1992). On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43: 270–291 · Zbl 0763.35087 · doi:10.1007/BF00946631
[26]Shatah J. and Strauss W.A. (1985). Instability of nonlinear bound states. Commun. Math. Phys. 100: 173–190 · Zbl 0603.35007 · doi:10.1007/BF01212446
[27]Shu J. and Zhang J. (2007). conditons of global existence for the generalized Davey-Stewartson system. IMA J. Appl. Math. 72(1): 36–42 · Zbl 1126.35069 · doi:10.1093/imamat/hxl029
[28]Soffer A. and Weinstein M.I. (1999). Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 36: 9–74 · Zbl 0910.35107 · doi:10.1007/s002220050303
[29]Tsutsumi M. (1994). Decay of weak solutions to the Davey-Stewartson systems. J. Math. Anal. Appl. 182(3): 680–704 · Zbl 0808.35142 · doi:10.1006/jmaa.1994.1113
[30]Wang B.X. and Guo B.L. (2001). On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems. Sci. in China 44(8): 994–1002 · Zbl 0997.35092 · doi:10.1007/BF02878975
[31]Weinstein M.I. (1983). Nonlinear Schrödinger equations and sharp interpolations estimates. Commun. Math. Phys. 87: 567–576 · Zbl 0527.35023 · doi:10.1007/BF01208265
[32]Zhang J. (1994). On the finite-time behaviour for nonlinear Schrödinger equations. Commun. Math. Phys. 162: 249–260 · Zbl 0811.35139 · doi:10.1007/BF02102016
[33]Zhang J. (2002). Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations. Nonlinear Anal. 48: 191–207 · Zbl 1038.35131 · doi:10.1016/S0362-546X(00)00180-2
[34]Zhang J. (2005). Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential. Commun. in PDE 30: 1429–1443 · Zbl 1081.35109 · doi:10.1080/03605300500299539
[35]Zhang, J.: Cross-constrained variational problem and nonlinear Schrödinger equation. In: Proceedings of the Smalefest 2000, F. Cucker, J. M. Rojas (eds.), Foundations of Computational Math. Series 457–469, River Edge, NJ: World Scientific, 2002