zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex dynamics of an adnascent-type game model. (English) Zbl 1158.91324
Summary: The paper presents a nonlinear discrete game model for two oligopolistic firms whose products are adnascent. (In biology, the term adnascent has only one sense, “growing to or on something else,” e.g., “moss is an adnascent plant.” See Webster’s Revised Unabridged Dictionary published in 1913 by C. & G. Merriam Co., edited by Noah Porter.) The bifurcation of its Nash equilibrium is analyzed with Schwarzian derivative and normal form theory. Its complex dynamics is demonstrated by means of the largest Lyapunov exponents, fractal dimensions, bifurcation diagrams, and phase portraits. At last, bifurcation and chaos anticontrol of this system are studied.
MSC:
91A25Dynamic games
91A052-person games
37N40Dynamical systems in optimization and economics
91A40Game-theoretic models