zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization of Markovian jump linear system over networks with random communication delay. (English) Zbl 1158.93412
Summary: This paper is concerned with the stabilization problem for a networked control system with Markovian characterization. We consider the case that the random communication delays exist both in the system state and in the mode signal which are modeled as a Markov chain. The resulting closed-loop system is modeled as a Markovian jump linear system with two jumping parameters, and a necessary and sufficient condition on the existence of stabilizing controllers is established. An iterative linear matrix inequality approach is employed to calculate a mode-dependent solution. Finally, a numerical example is given to illustrate the effectiveness of the proposed design method.
93E15Stochastic stability
93C05Linear control systems
60J75Jump processes
60J05Discrete-time Markov processes on general state spaces