zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A second Wronskian formulation of the Boussinesq equation. (English) Zbl 1159.37425
Summary: A Wronskian formulation leading to rational solutions is presented for the Boussinesq equation. It involves third-order linear partial differential equations, whose representative systems are systematically solved. The resulting solutions formulas provide a direct but powerful approach for constructing rational solutions, positon solutions and complexiton solutions to the Boussinesq equation. Various examples of exact solutions of those three kinds are computed. The newly presented Wronskian formulation is different from the one previously presented by Ch.-X. Li et al. [Inverse Probl. 23, No. 1, 279–296 (2007; Zbl 1111.35044)], which does not yield rational solutions.
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
35Q58Other completely integrable PDE (MSC2000)
35Q51Soliton-like equations