zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms. (English) Zbl 1159.65351

Summary: With the aid of symbolic computation and two auxiliary ordinary differential equations, the new generalized algebraic method is extended to the generalized Zakharov-Kuznetsov (GZK) equation with higher-order nonlinear terms for constructing a series of new and more general travelling wave solutions. Because of the higher-order nonlinear terms, the equation can not be directly dealt with by the method and require some kinds of techniques.

By means of two proper transformations, we transform the GZK equation to an ordinary differential equation that is easy to solve and find a rich variety of new exact travelling wave solutions for the GZK equation, which include soliton solutions, combined soliton solutions, triangular periodic solutions, Jacobi elliptic function solutions, combined Jacobi elliptic function solutions and rational function solutions. The method used here can be also extended to other nonlinear partial differential equations with higher-order nonlinear terms.

MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35Q51Soliton-like equations
35Q53KdV-like (Korteweg-de Vries) equations
References:
[1]Ablowitz, M. J.; Segur, H.: Soliton and the inverse scattering transformation, (1981)
[2]Hirota, R.; Satsuma, J.: Soliton solutions of a coupled Korteweg-de Vries equation, Phys. lett. A 85, 407 (1981)
[3]Conte, R.; Musette, M.: Painlevé analysis and Bäcklund transformation in the Kuramoto – Sivashinsky equation, J. phys. A: math. Gen. 22, 169 (1989) · Zbl 0687.35087 · doi:10.1088/0305-4470/22/2/006
[4]Wadati, M.: Wave propagation in nonlinear lattice. I, J. phys. Soc. jpn. 38, 673 (1975)
[5]Zhang, L. H.; Liu, X. Q.; Bai, C. L.: New multiple soliton-like and periodic solutions for (2+1)-dimensional canonical generalized KP equation with variable coefficients, Commun. theor. Phys. (Beijing, China) 46, 793 (2006)
[6]Bai, C. L.; Bai, C. J.; Zhao, H.: A new generalized algebraic method and its application in nonlinear evolution equations with variable coefficients, Z. naturforsch. 60a, 211 (2005)
[7]Yomba, E.: Construction of new soliton-like solutions for the (2+1)-dimensional Kadomtsev – Petviashvili equation, Chaos, solitons fract. 22, 321 (2004) · Zbl 1063.35141 · doi:10.1016/j.chaos.2004.02.001
[8]Yomba, E.: On exact solutions of the coupled Klein – Gordon – Schrödinger and the complex coupled KdV equations using mapping method, Chaos, solitons fract. 21, 209 (2004) · Zbl 1046.35105 · doi:10.1016/j.chaos.2003.10.028
[9]Zhao, X. Q.; Zhi, H. Y.; Zhang, H. Q.: Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Itô system, Chaos, solitons fract. 28, 112 (2006) · Zbl 1134.35301 · doi:10.1016/j.chaos.2005.05.016
[10]Chen, H. T.; Zhang, H. Q.: New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation, Chaos, solitons fract. 20, 765 (2004) · Zbl 1049.35150 · doi:10.1016/j.chaos.2003.08.006
[11]Fan, E.: Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos, solitons fract. 16, 819 (2003) · Zbl 1030.35136 · doi:10.1016/S0960-0779(02)00472-1
[12]Chen, Y.; Wang, Q.: A new general algebraic method with symbolic computation to construct new travelling wave solution for the (1+1)-dimensional dispersive long wave equation, Appl. math. Comput. 168, 1189 (2005) · Zbl 1082.65578 · doi:10.1016/j.amc.2004.10.012
[13]Wang, D. S.; Li, H. B.: Elliptic equation’s new solutions and their applications to two nonlinear partial differential equations, Appl. math. Comput. 188, 762 (2007) · Zbl 1118.65379 · doi:10.1016/j.amc.2006.10.026
[14]Hongsit, N.; Allen, M. A.; Rowlands, G.: Growth rate of transverse instabilities of solitary pulse solutions to a family of modified Zakharov – Kuznetsov equations, Phys. lett. 372, 2420 (2008) · Zbl 1220.76080 · doi:10.1016/j.physleta.2007.12.005
[15]Fu, Z. T.; Liu, S. K.; Liu, S. D.: Multiple structures of two dimensional nonlinear Rossby wave, Chaos, solitons fract. 24, 383 (2005) · Zbl 1067.35071 · doi:10.1016/j.chaos.2004.09.043
[16]Yan, Z. L.; Liu, X. Q.: Symmetry reductions and explicit solutions for a generalized Zakharov – Kuznetsov equation, Commun. theor. Phys. (Beijing, China) 45, 29 (2006) · Zbl 1170.35526 · doi:10.1088/0253-6102/45/1/004
[17]Yan, Z. L.; Liu, X. Q.: Symmetry and similarity solutions of variable coefficients generalized Zakharov – Kuznetsov equation, Appl. math. Comput. 180, 288 (2006) · Zbl 1109.35101 · doi:10.1016/j.amc.2005.12.021
[18]Wazwaz, A. M.: Exact solutions with solitons and periodic structures for the Zakharov – Kuznetsov (ZK) equation and its modified form, Commun. nonlinear sci. Numer. simul. 10, 597 (2005) · Zbl 1070.35075 · doi:10.1016/j.cnsns.2004.03.001
[19]Wazwaz, A. M.: The extended tanh method for the Zakharov – Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commun. nonlinear sci. Numer. simul. 13, 1039 (2008) · Zbl 1221.35373 · doi:10.1016/j.cnsns.2006.10.007
[20]Li, B.; Chen, Y.; Zhang, H. Q.: Exact travelling wave solutions for a generalized Zakharov – Kuznetsov equation, Appl. math. Comput. 146, 653 (2003) · Zbl 1037.35070 · doi:10.1016/S0096-3003(02)00610-0
[21]Zhao, H.: Construction of a series of travelling wave solutions to nonlinear equations, Chaos, solitons fract. 36, 1283 (2008) · Zbl 1141.35457 · doi:10.1016/j.chaos.2006.07.047
[22]Huang, D. J.; Li, D. S.; Zhang, H. Q.: Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation, Chaos, solitons fract. 31, 586 (2007) · Zbl 1139.35092 · doi:10.1016/j.chaos.2005.10.007
[23]Yomba, E.: A generalized auxiliary equation method and its application to nonlinear Klein – Gordon equation and generalized nonlinear Camassa – Holm equations, Phys. lett. A 372, 1048 (2008) · Zbl 1217.81075 · doi:10.1016/j.physleta.2007.09.003