zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A multi-objective joint replenishment inventory model of deteriorated items in a fuzzy environment. (English) Zbl 1159.90532
Summary: In this study, a fuzzy multi-objective joint replenishment inventory model of deteriorating items is developed. The model maximizes the profit and return on inventory investment (ROII) under fuzzy demand and shortage cost constraint. We propose a novel inverse weight fuzzy non-linear programming (IWFNLP) to formulate the fuzzy model. A soft computing, differential evolution (DE) with/without migration operation, is proposed to solve the problem. The performances of the proposed fuzzy method and the conventional fuzzy additive goal programming (FAGP) are compared. We show that the solution derived from the IWFNLP method satisfies the decision maker’s desirable achievement level of the profit objective, ROII objective and shortage cost constraint goal under the desirable possible level of fuzzy demand. It is an effective decision tool since it can really reflect the relative importance of each fuzzy component.
MSC:
90C70Fuzzy programming
References:
[1]Bellman, R. E.; Zadeh, L. A.: Decision-making in a fuzzy environment, Management science 17, B141-B164 (1970) · Zbl 0224.90032
[2]Chang, P. T.; Yao, M. J.; Huang, S. F.; Chen, C. T.: A genetic algorithm for solving a fuzzy economic lot-size scheduling problem, International journal of production economics 102, 265-288 (2006)
[3]Chen, L. H.; Tsai, F. C.: Fuzzy goal programming with different importance and priorities, European journal of operational research 133, 548-556 (2001) · Zbl 1053.90140 · doi:10.1016/S0377-2217(00)00201-0
[4]Chiou, J. P.; Wang, F. S.: Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process, Computers and chemical engineering 23, 1277-1291 (1999)
[5]Deb, K.: An efficient constraint handling method for genetic algorithms, Computer methods in applied mechanics and engineering 186, 311-338 (2000) · Zbl 1028.90533 · doi:10.1016/S0045-7825(99)00389-8
[6]Dey, J. K.; Kar, S.; Maiti, M.: An interactive method for inventory control with fuzzy lead-time and dynamic demand, European journal of operational research 167, 381-397 (2005) · Zbl 1075.90003 · doi:10.1016/j.ejor.2003.07.025
[7]Lam, S. M.; Wong, D. S.: A fuzzy mathematical model for the joint economic lot size problem with multiple price breaks, European journal of operational research 95, 611-622 (1996) · Zbl 0926.90004 · doi:10.1016/0377-2217(95)00310-X
[8]Lee, E. S.; Li, R. J.: Fuzzy multiple objective programming and compromise programming with Pareto optima, Fuzzy sets and systems 3, 275-288 (1993) · Zbl 0807.90130 · doi:10.1016/0165-0114(93)90399-3
[9]Maity, K.; Maiti, M.: Numerical approach of multi-objective optimal control problem in imprecise environment, Fuzzy optimization and decision making 4, 313-330 (2005) · Zbl 1110.49020 · doi:10.1007/s10700-005-3666-1
[10]Mandal, N. K.; Roy, T. K.; Maiti, M.: Multi-objective fuzzy inventory model with three constraints: A geometric programming approach, Fuzzy sets and systems 150, 87-106 (2005) · Zbl 1075.90005 · doi:10.1016/j.fss.2004.07.020
[11]Z. Michalewicz, Genetic Algorithms+Data Structure=Evolution Programs, Springer, 1992, Second, extended edition, 1994, Third, revised and extended edition, Berlin, 1996.
[12]Mondal, S.; Maiti, M.: Multi-item fuzzy EOQ models using genetic algorithm, Computers and industrial engineering 44, 105-117 (2002)
[13]Otake, T.; Min, K. J.: Inventory and investment in quality improvement under return on investment maximization, Computers and operations research 28, 113-124 (2001) · Zbl 1017.90003 · doi:10.1016/S0305-0548(00)00022-8
[14]Rosenberg, D.: Optimal price-inventory decisions profit vs ROII, IIE transactions 23, 17-22 (1991)
[15]Rosenthal, R. E.: Concepts theory and techniques: principles of multi-objective optimization, Decision sciences 16, 133-152 (1985)
[16]Roy, T. K.; Maiti, M.: Multi-objective inventory models of deteriorating items with some constraints in a fuzzy environment, Computers and operations research 25, 1085-1095 (1998) · Zbl 1042.90511 · doi:10.1016/S0305-0548(98)00029-X
[17]Sakawa, M.; Yauchi, K.: An interactive fuzzy satisfying method for multi-objective nonconvex programming problems through floating point genetic algorithms, European journal of operational research 117, 113-124 (1999) · Zbl 0998.90073 · doi:10.1016/S0377-2217(98)00128-3
[18]Schroeder, R. G.; Krishnan, R.: Return on investment as a criterion for inventory model, Decision sciences 7, 697-704 (1976)
[19]R. Storn, On the usage of differential evolution for function optimization, in: Annual Conference of the North American Fuzzy Information Processing Society – NAFIPS, New Frontiers in Fuzzy Logic and Soft Computing, 1996, pp. 519 – 523.
[20]Storn, R.; Price, K. V.: Minimizing the real functions of the ICEC ’96 contest by differential evolution, IEEE conference on evolutionary computation, 842-844 (1996)
[21]Storn, R.; Price, K. V.: Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization 11, 341-359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[22]Tiwari, R. N.; Dharmar, S.; Rao, J. R.: Fuzzy goal programming – an additive model, Fuzzy sets and systems 24, 27-34 (1987) · Zbl 0627.90073 · doi:10.1016/0165-0114(87)90111-4
[23]Wang, J.; Shu, Y. F.: Fuzzy decision modeling for supply chain management, Fuzzy sets and systems 150, 107-127 (2005) · Zbl 1075.90532 · doi:10.1016/j.fss.2004.07.005
[24]Xie, Y.; Petrovic, D.; Burnham, K.: A heuristic procedure for the two-level control of serial supply chains under fuzzy customer demand, International journal of production economics 102, 37-50 (2006)
[25]Zimmermann, H. J.: Fuzzy programming and linear programming with several objective functions, Fuzzy sets and systems 1, 45-55 (1978) · Zbl 0364.90065 · doi:10.1016/0165-0114(78)90031-3
[26]Zimmermann, H. J.: Fuzzy mathematical programming, Computers and operations research 10, 291-298 (1983)