zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modeling supplier selection and the use of option contracts for global supply chain design. (English) Zbl 1160.90325
Summary: As supply chains become more and more dependent on the efficient movement of materials among facilities that are geographically dispersed there is more opportunity for disruption. One of the common disruptions is the loss of production capability at supplier sites. We formulate a two-stage stochastic program and a solution procedure to optimize supplier selection to hedge against these disruptions. This model allows for the effective quantitative exploration of the trade-off between cost and risks to support improved decision-making in global supply chain design. A realistic case study is explored.
90B06Transportation, logistics
90C15Stochastic programming
[1]Landeghem, H.; Vanmaele, H.: Robust planning: a new paradigm for demand chain planning, Journal of operations management 20, 769-783 (2002)
[2]Thomas M. Supply chain reliability for contingency operations. In: Annual reliability and maintainability symposium, 2002. p. 61 – 7.
[3]Berger, P. D.; Gerstenfeld, A.; Zeng, A. Z.: How many suppliers are best? A decision-analysis approach, Omega 32, 9-15 (2004)
[4]Blackhurst, J.; Wu, T.; O’grady, P.: Network-based approach to modelling uncertainty in a supply chain, International journal of production research 15, 1639-1658 (2004) · Zbl 1099.90511 · doi:10.1080/0020754030360001646064
[5]Beale, E.: On minimizing a convex function subject to linear inequalities, Journal of the royal statistical society 17, 173-184 (1955) · Zbl 0068.13701
[6]Dantzig, G. B.: Linear programming under uncertainty, Management science 1, 197-206 (1955) · Zbl 0995.90589 · doi:10.1287/mnsc.1.3-4.197
[7]Birge, J.; Louveaux, F.: Introduction to stochastic programming, (1997)
[8]Laporte, G.; Louveaux, F.: The integer L-shaped method for stochastic integer programs with complete recourse, Operations research letters 13, No. 3, 133-142 (1993) · Zbl 0793.90043 · doi:10.1016/0167-6377(93)90002-X
[9]Van Slyke, R. M.; Wets, R. J. B.: L-shaped programs with applications to optimal control and stochastic linear programming, SIAM journal of applied mathematics 17, No. 4, 638-663 (1969) · Zbl 0197.45602 · doi:10.1137/0117061
[10]Wollmer, R.: Two stage linear programming under uncertainty with 0 – 1 integer first stage variables, Mathematical programming 19, 279-288 (1980) · Zbl 0442.90076 · doi:10.1007/BF01581648
[11]Bawa, V.: Optimal rules for ordering uncertain prospects, Journal of financial economics 2, 95-121 (1975)
[12]Fishburn, P. C.: Mean-risk analysis with risk associated with below-target returns, The American economic review 67, 116-126 (1997)
[13]Mulvey, J.; Vanderbei, R. J.; Zenios, S. A.: Robust optimization of large-scale systems, Operations research 43, 254-281 (1995) · Zbl 0832.90084 · doi:10.1287/opre.43.2.264
[14]Paraskevopoulos, D.; Karakitsos, E.; Rustem, B.: Robust capacity planning under uncertainty, Management science 37, 787-800 (1991) · Zbl 0729.90670 · doi:10.1287/mnsc.37.7.787
[15]Owen, S.; Daskin, D.: Strategic facility location, European journal of operational research 111, 423-447 (1998)
[16]Malcolm, S. A.; Zenios, S.: Robust optimization for power systems capacity expansion under uncertainty, Journal of the operational research society 45, 1040-1049 (1994) · Zbl 0815.90108
[17]Escudero, L. F.; Kamesam, P. V.; King, A. J.; Wets, R. J.: Production planning via scenario modeling, Annals of operations research 43, 311-335 (1993) · Zbl 0784.90033
[18]Mulvey, J.; Ruszczynski, A.: A new scenario decomposition method for large-scale stochastic optimization, Operations research 43, 477-490 (1995) · Zbl 0843.90086 · doi:10.1287/opre.43.3.477
[19]Soteriou, A. C.; Chase, R. B.: A robust optimization approach for improving service quality, Manufacturing & service operations management 2, 264-286 (2000)
[20]Yu, C.; Li, H.: A robust optimization model for stochastic logistic problems, International journal of production economics 64, 385-397 (2000)
[21]Liu C, Fan Y, Ordóňez F. A two-stage stochastic programming model for transportation network protection. Computers amp; Operations Research 2009;36:1582 – 90. · Zbl 1179.90246 · doi:10.1016/j.cor.2008.03.001
[22]Listeş, O.: A generic stochastic model for supply-and-return network design, Computers & operations research 34, 417-442 (2007) · Zbl 1113.90024 · doi:10.1016/j.cor.2005.03.007
[23]List, G.; Wood, B.; Nozick, L.; Turnquist, M.; Jones, D.; Kjeldgaard, E.; Lawton, C.: Robust optimization for fleet planning under uncertainty, Transportation research, part E 39, No. 3, 209-227 (2003)
[24]Xu, N.; Davidsion, R. A.; Nozick, L. K.; Dodo, A.: The risk-return tradeoff in optimizing regional mitigation investment, Structure and infrastructure engineering 3, No. 2, 133-146 (2007)
[25]Snyder, L.: Facility location under uncertainty: a review, IIE transactions 38, 537-554 (2006)
[26]Syam, S.: Multiperiod capacity expansion in globally dispersed regions, Decision sciences 31, No. 1, 173-195 (2000)
[27]Syam, S.: A model for the capacitated p-facility location problem in a global context, Computers & operations research 24, No. 11, 1005-1016 (1997) · Zbl 0889.90105 · doi:10.1016/S0305-0548(97)00020-8
[28]Daskin, M.; Hesse, S.; Revelle, C.: α-reliability p-minimax regret: a new model for strategic facility location modeling, Location science 5, No. 4, 227-246 (1997) · Zbl 0917.90231 · doi:10.1016/S0966-8349(98)00036-9
[29]Chen, G.; Daskin, M.; Shen, Z.; Uryasev, S.: The α-reliable mean-excess regret model for stochastic facility location modeling, Naval research logistics 53, 617-626 (2006) · Zbl 1106.90050 · doi:10.1002/nav.20180
[30]Snyder, L.; Daskin, M.; Teo, C.: The stochastic location model with risk pooling, European journal of operational research 179, No. 3, 1221-1238 (2007) · Zbl 1127.90039 · doi:10.1016/j.ejor.2005.03.076
[31]Snyder, L.; Daskin, M.: Reliability models for facility location: the expected failure cost case, Transportation science 39, No. 3, 400-416 (2005)
[32]Snyder, L.; Daskin, M.: Stochastic p-robust location problems, IIE transactions 38, 971-985 (2006)
[33]Santoso, T.; Ahmed, S.; Goetschalckx, M.; Shapiro, A.: A stochastic programming approach for supply chain network design under uncertainty, European journal of operational research 167, 96-115 (2005) · Zbl 1075.90010 · doi:10.1016/j.ejor.2004.01.046
[34]Black, F.; Scholes, M.: The pricing of options and corporate liabilities, Journal of political economics 81, 637-659 (1973)
[35]Merton, R.: Theory of rational option pricing, The Bell journal of economics management science 4, 141-183 (1973)
[36]Smith, C.: Option pricing: a review, Journal of financial economics 3, 3-51 (1976)
[37]Ritchen, P.; Tapiero, C.: Contingent claims contracting for purchasing decisions in inventory management, Operations research 34, 864-870 (1986) · Zbl 0617.90016 · doi:10.1287/opre.34.6.864
[38]Barnes-Schuster, D.; Bassok, Y.; Anupindi, R.: Coordination and flexibility in supply contracts with options, Manufacturing service operations management 4, 171-207 (2002)
[39]Chang C. Semiconductor contract manufacturing. Report SCMS-WW-FR-9601, Dataquest Corporation; 1996.
[40]Cole J. Boeing’s surplus lot filling up, Seattle Times, October 4, 1998.
[41]Dada, M.; Petruzzi, N. C.; Schwarz, L. B.: A newsvendor’s procurement problem when suppliers are unreliable, Manufacturing and service operations management 9, 9-32 (2007)
[42]Tomlin, B. T.: On the value of mitigation and contingency strategies for managing supply chain disruption risks, Management science 52, 639-657 (2006) · Zbl 1232.90200 · doi:10.1287/mnsc.1060.0515
[43]Ahuja, R. K.; Magnanti, T. L.; Orlin, J. B.: Network flows, (1993)