zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On American options under the variance gamma process. (English) Zbl 1160.91346
Summary: American options are considered in a market where the underlying asset follows a Variance Gamma process. A sufficient condition is given for the failure of the smooth fit principle for finite horizon call options. A second-order accurate finite-difference method is proposed to find the American option price and the exercise boundary. The problem is formulated as a Linear Complementarity Problem and solved numerically by a convenient splitting. Computations have been accelerated with the help of the Fast Fourier Transform. A stability analysis shows that the scheme is conditionally stable, with a mild stability condition of the form k=O(|log(h)| -1 ). The theoretical results are verified numerically throughout a series of numerical experiments.
MSC:
91B28Finance etc. (MSC2000)
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
45J05Integro-ordinary differential equations
65M06Finite difference methods (IVP of PDE)
65T50Discrete and fast Fourier transforms (numerical methods)