zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. (English) Zbl 1161.76487

Summary: This paper develops the theory and computation of Lagrangian Coherent Structures (LCS), which are defined as ridges of Finite-Time Lyapunov Exponent (FTLE) fields. These ridges can be seen as finite-time mixing templates. Such a framework is common in dynamical systems theory for autonomous and time-periodic systems, in which examples of LCS are stable and unstable manifolds of fixed points and periodic orbits. The concepts defined in this paper remain applicable to flows with arbitrary time dependence and, in particular, to flows that are only defined (computed or measured) over a finite interval of time.

Previous work has demonstrated the usefulness of FTLE fields and the associated LCSs for revealing the Lagrangian behavior of systems with general time dependence. However, ridges of the FTLE field need not be exactly advected with the flow. The main result of this paper is an estimate for the flux across an LCS, which shows that the flux is small, and in most cases negligible, for well-defined LCSs or those that rotate at a speed comparable to the local Eulerian velocity field, and are computed from FTLE fields with a sufficiently long integration time. Under these hypotheses, the structures represent nearly invariant manifolds even in systems with arbitrary time dependence.

The results are illustrated on three examples. The first is a simplified dynamical model of a double-gyre flow. The second is surface current data collected by high-frequency radar stations along the coast of Florida and the third is unsteady separation over an airfoil. In all cases, the existence of LCSs governs the transport and it is verified numerically that the flux of particles through these distinguished lines is indeed negligible.

MSC:
76F20Dynamical systems approach to turbulence
37B55Nonautonomous dynamical systems
37N10Dynamical systems in fluid mechanics, oceanography and meteorology