zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The BCS functional for general pair interactions. (English) Zbl 1161.82027
This paper deals with the study of the Bardeen-Cooper-Schrieffer regime, in the case where the interaction potentials are local for atomic Fermi gases. The mathematical framework is described by a functional, initially derived by Leggett. The main purpose of the present paper is to obtain necessary and sufficient conditions on pair interaction potentials such that the system behaves a superfluid behavior. The authors deduce the existence of a critical temperature below which the Bardeen-Cooper-Schrieffer pairing wave function does not vanish identically. The arguments developed in this paper combine variational techniques with related L p estimates.

MSC:
82D55Superconductors (statistical mechanics)
82B10Quantum equilibrium statistical mechanics (general)
References:
[1]Andrenacci N., Perali A., Pieri P., Strinati G.C.: Density-induced BCS to Bose-Einstein crossover. Phys. Rev. B 60, 12410 (1999) · doi:10.1103/PhysRevB.60.12410
[2]Bach V., Lieb E., Solovej J.: Generalized Hartree-Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994) · doi:10.1007/BF02188656
[3]Bardeen J., Cooper L., Schrieffer J.: Theory of Superconductivity. Phys. Rev. 108, 1175–1204 (1957) · Zbl 0090.45401 · doi:10.1103/PhysRev.108.1175
[4]Billard P., Fano G.: An existence proof for the gap equation in the superconductivity theory. Commun. Math. Phys. 10, 274–279 (1968)
[5]Bloch, I., Dalibard, J., Zwerger, W.: Many-Body Physics with Ultracold Gases. http://arxiv.org/abs/:0704.3011 , 2007, to appear in Rev. Mod. Phys.
[6]Carlson J., Chang S.-Y., Pandharipande V.R., Schmidt K.E.: Superfluid Fermi Gases with Large Scattering Length. Phys. Rev. Lett. 91, 0504011 (2003)
[7]Chen Q., Stajic J., Tan S., Levin K.: BCS–BEC crossover: From high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005) · doi:10.1016/j.physrep.2005.02.005
[8]Fetter A., Walecka J.D.: Quantum theory of many-particle systems. McGraw-Hill, New-York (1971)
[9]Frank R.L., Hainzl C., Naboko S., Seiringer R.: The critical temperature for the BCS equation at weak coupling. J. Geom. Anal. 17, 559–568 (2007)
[10]Leggett, A.J.: Diatomic Molecules and Cooper Pairs. Modern trends in the theory of condensed matter, J. Phys. (Paris) Colloq, C7–19 Bertin-Heidelberg-New York: Springer, 1980
[11]Lieb, E., Loss, M.: Analysis. Providence RI: Amer. Math. Soc., 2001
[12]Martin P.A., Rothen F.: Many-body problems and Quantum Field Theory. Springer, Berlin-Heidelberg-New York (2004)
[13]McLeod J.B., Yang Y.: The uniqueness and approximation of a positive solution of the Bardeen-Cooper-Schrieffer gap equation. J. Math. Phys. 41, 6007–6025 (2000)
[14]Nozières P., Schmitt-Rink S.: Bose Condensation in an Attractive Fermion Gas: From Weak to Strong Coupling Superconductivity. J. Low Temp. Phys. 59, 195–211 (1985)
[15]Parish M., Mihaila B., Timmermans E., Blagoev K., Littlewood P.: BCS-BEC crossover with a finite-range interaction. Phys. Rev. B 71, 0645131–0645136 (2005) · doi:10.1103/PhysRevB.71.064513
[16]Randeria, M.: In: Bose-Einstein Condensation, Griffin, A., Snoke, D.W., Stringari, S. eds., Cambridge: Cambridge University Press, 1995
[17]Tiesinga E., Verhaar B.J., Stoof H.T.C.: Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114 (1993) · doi:10.1103/PhysRevA.47.4114
[18]Vansevenant A.: The gap equation in superconductivity theory. Physica 17D, 339–344 (1985)
[19]Yang Y.: On the Bardeen-Cooper-Schrieffer integral equation in the theory of superconductivity. Lett. Math. Phys. 22, 27–37 (1991) · Zbl 0729.45009 · doi:10.1007/BF00400375