zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Magnetized stiff fluid cylindrically symmetric universe with two degrees of freedom in general relativity. (English) Zbl 1161.83321
Summary: A magnetized stiff fluid cylindrically symmetric universe with two degrees of freedom for perfect fluid distribution, is investigated. The magnetic field is due to an electric current produced along x-axis. The distribution consists of an electrically neutral perfect fluid with an infinite electrical conductivity. The behaviour of the model in presence and absence of magnetic field is discussed. The other physical aspects of the model related to the observations are also discussed.
83C15Closed form solutions of equations in general relativity
83C22Einstein-Maxwell equations
83F05Relativistic cosmology
[1]Zel’dovich, Ya.B.: Z. Eksp. Teor. Fiz. 41, 1609 (1961)
[2]Zel’dovich, Ya.B.: Mon. Not. R. Astron. Soc. 160, 1 (1970)
[3]Barrow, J.D.: Nature 272, 211 (1978) · doi:10.1038/272211a0
[4]Letelier, P.S., Tabensky, R.R.: Nuovo Cimento B 28, 407 (1975) · doi:10.1007/BF02726666
[5]Tabensky, R.R., Taub, A.H.: Commun. Math. Phys. 29, 61 (1973) · Zbl 0247.76107 · doi:10.1007/BF01661153
[6]Roy, S.R., Singh, P.N.: J. Phys. A 14, 1049 (1977)
[7]Wesson, P.S.: J. Math. Phys. 19, 2283 (1978) · doi:10.1063/1.523605
[8]McIntosh, C.B.G.: Phys. Lett. A 69, 1 (1978) · doi:10.1016/0375-9601(78)90417-6
[9]Mohanty, G., Tiwari, R.N., Rao, J.R.: Int. J. Theor. Phys. 21(2), 105 (1982) · doi:10.1007/BF01857849
[10]Götz, G.: Gen. Relativ. Gravit. 20, 23 (1988) · Zbl 0634.53051 · doi:10.1007/BF00759253
[11]Asseo, E., Sol, H.: Phys. Rep. 6, 148 (1987)
[12]Bronnikov, K.A., Chudayeva, E.N., Shikin, G.N.: Class. Quantum Gravity 21, 3389 (2004) · Zbl 1062.83090 · doi:10.1088/0264-9381/21/14/005
[13]Hughston, L.P., Jacobs, K.C.: Astrophys. J. 160, 147 (1970) · doi:10.1086/150413
[14]Thorne, K.S.: Astrophys. J. 148, 51 (1967) · doi:10.1086/149127
[15]Roy, S.R., Singh, J.P.: Aust. J. Phys. 38(5), 763 (1985)
[16]Bali, R., Tyagi, A.: Int. J. Theor. Phys. 27(5), 627 (1987) · Zbl 0644.76139 · doi:10.1007/BF00668844
[17]Maartens, R.: Pramana J. Phys. 55(4), 575 (2000) · doi:10.1007/s12043-000-0167-1
[18]Jacobs, K.C.: Astrophys. J. 153, 661 (1968) · doi:10.1086/149694
[19]Jacobs, K.C.: Astrophys. J. 155, 379 (1969) · doi:10.1086/149875
[20]Collins, C.B.: Commun. Math. Phys. 27, 37 (1972) · doi:10.1007/BF01649657
[21]Roy, S.R., Prakash, S.: Indian J. Phys. B 52, 47 (1978)
[22]Roy, S.R., Bali, R., Prakash, S.: Proc. Indian Acad. Sci. A 87, 181 (1978) · doi:10.1007/BF02837753
[23]Bali, R., Ali, M.: Pramana J. Phys. 47(1), 25 (1996) · doi:10.1007/BF02847163
[24]Stachel, J.J.: J. Math. Phys. 6, 1321 (1966) · Zbl 0184.55105 · doi:10.1063/1.1705036
[25]Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics, p. 93. Benjamin, Elmsford (1967)
[26]Ellis, G.F.R.: General Relativity and Cosmology, p. 117. Academic Press, New York (1971) (Sachs, R.K. (ed.))
[27]MacCallum, M.A.H.: Commun. Math. Phys. 20, 57 (1971) · doi:10.1007/BF01646733