zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Travelling wave solutions of the Cahn-Allen equation by using first integral method. (English) Zbl 1162.35304
Summary: We establish travelling wave solutions of the nonlinear equation. The first integral method is used to construct travelling wave solutions of the Cahn-Allen equation. The obtained results include periodic and solitary wave solutions.
35A20Analytic methods, singularities (PDE)
35G20General theory of nonlinear higher-order PDE
35B10Periodic solutions of PDE
35C05Solutions of PDE in closed form
[1]Ablowitz, M. J.; Clarkson, P. A.: Solitons, nonlinear evolution equations and inverse scattering transform, (1990)
[2]Vakhnenko, V. O.; Parkes, E. J.; Morrison, A. J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos, solitons & fractals 17, No. 4, 683 (2003) · Zbl 1030.37047 · doi:10.1016/S0960-0779(02)00483-6
[3]Hirota, R.: Direct method of finding exact solutions of nonlinear evolution equations, Bäcklund transformations, 1157 (1980)
[4]Malfliet, W.; Hereman, W.: The tanh method. I: exact solutions of nonlinear evolution and wave equations, Physica scripta 54, 563 (1996) · Zbl 0942.35034 · doi:10.1088/0031-8949/54/6/003
[5]Wazwaz, A. M.: The tanh method for travelling wave solutions of nonlinear equations, Applied mathematics and computation 154, No. 3, 713 (2004) · Zbl 1054.65106 · doi:10.1016/S0096-3003(03)00745-8
[6]Yusufo&gbreve, E.; Lu; Bekir, A.: Exact solutions of coupled nonlinear evolution equations, Chaos, solitons & fractals 37, No. 3, 842 (2008)
[7]El-Wakil, S. A.; Abdou, M. A.: New exact travelling wave solutions using modified extended tanh-function method, Chaos, solitons & fractals 31, No. 4, 840 (2007) · Zbl 1139.35388 · doi:10.1016/j.chaos.2005.10.032
[8]Fan, E.: Extended tanh-function method and its applications to nonlinear equations, Physics letters A 277, 212 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[9]Wazwaz, A. M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations, Applied mathematics and computation 187, 1131 (2007) · Zbl 1118.65370 · doi:10.1016/j.amc.2006.09.013
[10]Wazwaz, A. M.: A sine – cosine method for handling nonlinear wave equations, Mathematical and computer modelling 40, 499 (2004) · Zbl 1112.35352 · doi:10.1016/j.mcm.2003.12.010
[11]Bekir, A.: New solitons and periodic wave solutions for some nonlinear physical models by using sine – cosine method, Physica scripta 77, No. 4, 501 (2008)
[12]Fan, E.; Zhang, H.: A note on the homogeneous balance method, Physics letters A 246, 403 (1998) · Zbl 1125.35308 · doi:10.1016/S0375-9601(98)00547-7
[13]Bekir, A.; Boz, A.: Exact solutions for nonlinear evolution equations using exp-function method, Physics letters A 372, No. 10, 1619 (2008) · Zbl 1217.35151 · doi:10.1016/j.physleta.2007.10.018
[14]He, J. H.; Wu, X. H.: Exp-function method for nonlinear wave equations, Chaos, solitons & fractals 30, 700 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[15]Zhang, S.: Application of exp-function method to a KdV equation with variable coefficients, Physics letters A 365, 448 (2007) · Zbl 1203.35255 · doi:10.1016/j.physleta.2007.02.004
[16]A. Bekir, The tanh – coth method combined with the Riccati equation for solving nonlinear equation, Chaos, Solitons amp; Fractals, in press. · Zbl 1197.65104 · doi:10.1016/j.chaos.2007.09.029
[17]Feng, Z. S.: The first integral method to study the Burgers – KdV equation, Journal of physics A: mathematical and general 35, 343 (2002) · Zbl 1040.35096 · doi:10.1088/0305-4470/35/2/312
[18]Feng, Z. S.; Wang, X. H.: The first integral method to the two-dimensional Burgers – KdV equation, Physics letters A 308, 173 (2003) · Zbl 1008.35062 · doi:10.1016/S0375-9601(03)00016-1
[19]Ali, A. H. Ahmed; Raslan, K. R.: New solutions for some important partial differential equations, International journal of nonlinear science 4, 109 (2007)
[20]F. Tascan, A. Bekir, M. Koparan, Travelling wave solutions of nonlinear evolution equations by using the first integral method, Communications in Nonlinear Science and Numerical Simulation, in press.
[21]Raslan, K. R.: The first integral method for solving some important nonlinear partial differential equations, Nonlinear dynamics 53, No. 4, 281 (2008) · Zbl 1176.35149 · doi:10.1007/s11071-007-9262-x
[22]Ding, T. R.; Li, C. Z.: Ordinary differential equations, (1996)
[23]Allen, S. M.; Cahn, J. W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta metallurgica 27, 1085 (1979)
[24]Wazwaz, A. M.: The tanh – coth method for solitons and kink solutions for nonlinear parabolic equations, Applied mathematics and computation 188, 1467 (2007) · Zbl 1119.65100 · doi:10.1016/j.amc.2006.11.013