zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Evaluation of q-gamma function and q-analogues by iterative algorithms. (English) Zbl 1162.65008
Summary: Two known two-dimensional algorithms, obtained by modifying the classical arithmetic-harmonic mean, are reconsidered. Some rapidly convergent sequences associated with the algorithms are established and applied to the evaluation of q-analogous functions. Computation of q-gamma function, q-beta function, and q-exponential function is shown to be effective.
65D20Computation of special functions, construction of tables
33D05q-gamma functions, q-beta functions and integrals
33F05Numerical approximation and evaluation of special functions
[1]Allasia, G., Bonardo, F.: On the numerical evaluation of two infinite products. Math. Comp. 35(151), 917–931 (1980) · doi:10.1090/S0025-5718-1980-0572865-X
[2]Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge Univ. Press, Cambridge (2004)
[3]Borwein, J.M., Borwein, P.B.: Pi and the AGM. A Study in Analytic Number Theory and Computational Complexity. Wiley, New York (1987)
[4]Forster, D.M.E., Phillips, G.M.: The arithmetic-harmonic mean. Math. Comp. 42, 83–91 (1984)
[5]Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, vol. 35. Cambridge Univ. Press, Cambridge (1990)
[6]Gatteschi, L.: Procedimenti iterativi per il calcolo numerico di due prodotti infiniti. Rend. Sem. Mat. Univ. Politec. Torino 29, 187–201 (1969–70)
[7]Gautschi, W.: Luigi Gatteschi’s work on special functions and numerical analysis. In: Allasia, G. (ed.) Special Functions. Ann. Numer. Math. 2(1–4), pp. 3–19 (1995)
[8]Slater, L.J.: Some new results on equivalent products. Proc. Cambridge Phil. Soc. 50, 394–403 (1954) · doi:10.1017/S0305004100029509
[9]Wimp, J.: Computation with Recurrence Relations. Pitman, London (1984)