zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An iterative method for solving the Falkner-Skan equation. (English) Zbl 1162.65042
Summary: We propose a new iterative method to solve the boundary value problems (BVPs) of the Falkner-Skan equation over a semi-infinite interval. In our approach, we use the free boundary formulation to truncate the semi-infinite interval into a finite one. Then we use the shooting method to transform the BVP into initial value problems (IVPs). In order to find the “shooting angle” and the unknown free boundary, a modification of the classical Newton’s method is used where the Jacobian matrix can be accurately obtained by solving another two IVPs. To illustrate the effectiveness of our method, we compare our numerical results with those obtained by previous methods under various instances of the Falkner-Skan equation.
MSC:
65L10Boundary value problems for ODE (numerical methods)
34B15Nonlinear boundary value problems for ODE
References:
[1]Asaithambi, A.: Solution of the Falkner – Skan equation by recursive evaluation of Taylor coefficients, J. comput. Appl. math. 176, 203-214 (2005) · Zbl 1063.65065 · doi:10.1016/j.cam.2004.07.013
[2]Asaithambi, A.: A second-order finite-difference method for the Falkner – Skan equation, Appl. math. Comput. 156, 779-786 (2004) · Zbl 1108.76048 · doi:10.1016/j.amc.2003.06.020
[3]Asaithambi, A.: Numerical solution of the Falkner – Skan equation using piecewise linear function, Appl. math. Comput. 159, 267-273 (2004) · Zbl 1098.65110 · doi:10.1016/j.amc.2003.10.047
[4]Elgazery, N. S.: Numerical solution for the Falkner – Skan equation, Chaos solit. Fract. 35, 738-746 (2008) · Zbl 1135.76039 · doi:10.1016/j.chaos.2006.05.040
[5]Fazio, R.: A novel approach to the numerical solution of boundary value problems on infinite intervals, SIAM J. Numer. anal. 33, 1473-1483 (1996) · Zbl 0855.65090 · doi:10.1137/S0036142993252042
[6]Salama, A. A.: Higher-order method for solving free boundary-value problems, Numer. heat transfer, part B: fund. 45, 385-394 (2004)
[7]Rogers, D. F.: Laminar flow analysis, (1992) · Zbl 0773.76002