[1] | Holland, J. H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, (1992) |

[2] | A. Isaacs, T. Ray, W. Simth, A hybrid evolutionary algorithm with simplex local search, in: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 2007, pp. 1701 – 1708. |

[3] | Wei, Lingyun; Zhao, Mei: A niche hybrid genetic algorithm for global optimization of continuous multimodal functions, Applied mathematics and computation 160, 649-661 (2005) · Zbl 1062.65065 · doi:10.1016/j.amc.2003.11.023 |

[4] | Hwang, Shun Fa; He, Rong Song: A hybrid real-parameter genetic algorithm for function optimization, Advanced engineering informatics 20, 07-21 (2006) |

[5] | Leung, Y. W.; Wang, Y.: An orthogonal genetic algorithm with quantization for global numerical optimization, IEEE transactions on evolutionary computation 5, 41-53 (2001) |

[6] | Pan, Z. J.; Kang, L. S.: ”An adaptive evolutionary algorithms for numerical optimization” in simulated evolution and learning, Lecture notes in artificial intelligence (1997) |

[7] | , Swarm intelligence in data mining (2006) |

[8] | J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, 1995, pp. 1942 – 1948. |

[9] | Bonabeau, E.; Dorigo, M.; Theraulaz, G.: Swarm intelligence: from natural to artificial systems, (1999) · Zbl 1003.68123 |

[10] | Swarm Development Group, Swarm simulation system. lt;http://www.swarm.org/index.php?title=MainPageSwarmgt;. |

[11] | Liu, J.; Tang, Y. Y.: Adaptive segmentation with distributed behavior-based agents, IEEE transactions on pattern analysis and machine intelligence 21, No. 6, 544-551 (1999) |

[12] | J. Han, Data mining techniques. lt;ftp://ftp.fas.sfu.ca/pub/cs/han/kdd/sigmod96tutodes.psgt;. |

[13] | Zhong, W. C.; Liu, J.; Xue, M. Z.: A multiagent genetic algorithm for global numerical optimization, IEEE transactions on systems, man, and cybernetics – part B 34, No. 2, 1128-1141 (2004) |

[14] | Gong, Maoguo; Du, Haifeng; Jiao, Licheng: Optimal approximation of linear systems by artificial immune response, Science in China: series F information science 49, No. 1, 63-79 (2006) · Zbl 1107.93005 · doi:10.1007/s11432-005-0314-x |

[15] | Wang, Y.; Fang, K. T.: A note on uniform distribution and experimental design, Kexue tongbao 26, No. 6, 485-489 (1981) · Zbl 0493.62068 |

[16] | Fang, K. T.: Uniform design and design tables, (1994) |

[17] | Fang, K. T.; Wang, Y.: Number-theoretic methods in statistics, (1994) |

[18] | Iosifescu, M.: Finite Markov processes and their applications, (1980) · Zbl 0436.60001 |

[19] | Deep, Kusum; Thakur, Manoj: A new crossover operator for real coded genetic algorithms, Applied mathematics and computation 188, No. 1, 895-911 (2006) · Zbl 1137.90726 · doi:10.1016/j.amc.2006.10.047 |

[20] | Xue, Mingzhi; Zhong, Weicai; Liu, Jing: Orthogonal multi-agent genetic algorithm and its performance analysis, Control and decision 19, No. 3, 290-294 (2004) |

[21] | Garcı´ Alberto, A-Villoria; Rafael, Pastor: Introducing dynamic diversity into a discrete particle swarm optimization, Computers and operations research 36, No. 3, 951-966 (2009) |

[22] | W. Zhang, Y. Liu, M. Clerc, An adaptive PSO algorithm for reactive power optimization, in: Sixth International Conference on Advances in Power Control, Operation and Management, Hong Kong, 2003. |

[23] | Whitley, D.: The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best, Proceedings of the third international conference on genetic algorithms, 116-121 (1989) |

[24] | Manuel, Lozano; Francisco, Herrera; Jose, Ramon Cano: Replacement strategies to preserve useful diversity in steady-state genetic algorithms, Information sciences 178, No. 23, 4421-4433 (2009) |

[25] | Leung, Yiu Wing; Wang, Yu Ping: Multiobjective programming using uniform design and genetic algorithm, IEEE transactions on systems, man, and cybernetics – part C: Applications and reviews 30, No. 3, 293-304 (2000) |

[26] | Hisao, Ishibuchi; Tadahiko, Murata: A multi-objective genetic local search algorithm and its application to flowshop scheduling, IEEE transaction on system,Man, and cybernetics – part C: Applications and reviews 28, No. 3, 392-403 (1998) |

[27] | Yao, X.; Liu, Y.; Lin, G.: Evolutionary programming made faster, IEEE transactions on evolutionary computation 3, 82-102 (1999) |

[28] | Mühlenbein, H.; Schlierkamp-Vose, D.: Predictive models for the breeder genetic algorithm, Evolutionary computation 1, No. 1, 25-49 (1993) |

[29] | Du, Haifeng; Gong, Maoguo; Jiao, Licheng: A novel algorithm of artificial immune system for high-dimensional function numerical optimization, Progress in natural science 15, No. 5, 463-471 (2005) · Zbl 1089.90062 · doi:10.1080/10020070512331342410 |

[30] | Cheng, S. L.; Huang, C. Y.: Optimal approximation of linear systems by a differential evolution algorithm, IEEE transactions on systems, man, and cybernetics – part A 31, No. 6, 698-707 (2001) |

[31] | Reklaitis, G. V.; Ravindran, A.; Ragsdell, K. M.: Engineering optimization methods and applications, (1983) |