zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Flexible signature descriptions for adaptive motion trajectory representation, perception and recognition. (English) Zbl 1162.68640
Summary: Motion trajectory is a meaningful and informative clue in characterizing the motions of human, robots or moving objects. Hence, it is important to explore effective motion trajectory modeling. However, with the existing methods, a motion trajectory is used in its raw data form and effective trajectory description is lacking. In this paper, we propose a novel 3D motion trajectory signature descriptor and develop three signature descriptions for motion characterization. The flexible descriptions give the signature high functional adaptability to meet various application requirements in trajectory representation, perception and recognition. The full signature, optimized signature and cluster signature are firstly defined for trajectory representation. Then we explore the motion perception from a single signature, inter-signature matching and the generalization of a cluster signature. Furthermore, three solutions for signature recognition are investigated corresponding to different signature descriptions. The conducted experiments verified the signature’s capabilities and flexibility. The signature’s application to robot learning is also discussed.
68T10Pattern recognition, speech recognition
[1]Calinon, S.; Guenter, F.; Billard, A.: On learning, representing and generalizing a task in a humanoid robot, IEEE trans. Syst. man cyber. Part B 36, No. 5, 286-298 (2006)
[2]Ude, A.; Atkeson, C. G.; Riley, M.: Programming full-body movements for humanoid robots by observation, Robotics autonomous syst. 47, 93-108 (2004)
[3]Bennewitz, M.; Burgard, W.; Cielniak, G.; Thrun, S.: Learning motion patterns of people for compliant robot motion, Int. J. Robotics res. 24, No. 1, 31-48 (2005)
[4]M.J. Black, A.D. Jepson, A probabilistic framework for matching temporal trajectories: condensation-based recognition of gestures and expressions, in: Proceedings of the European Conference on Computer Vision, Freiburg, Germany, vol. 1, 1998, pp. 909 – 924.
[5]Martin, J.; Hall, D.; Crowley, J.: Statistical gesture recognition through modeling of parameter trajectories, Lecture notes in computer science 1739, 129-140 (1999)
[6]M.H. Yang, N. Ahuja, Recognizing hand gestures using motion trajectories, in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, pp. 468 – 472.
[7]Mckenna, S. J.; Morrison, K.: A comparison of skin history and trajectory-based representation schemes for the recognition of user-specified gestures, Pattern recognition 37, No. 5, 999-1009 (2004)
[8]D. Meyer, J. Psl, H. Niemann, Gait classification with HMMs for trajectories of body parts extracted by Mixture densities, in: Proceedings of British Machine Vision Conference, Southampton, England, 1998, pp. 459 – 468.
[9]J. Min, R. Kasturi, Activity recognition based on multiple motion trajectories, in: Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 2004, vol. 4, pp. 199 – 202.
[10]J. Min, R. Kasturi, Extraction and temporal segmentation of multiple motion trajectories in human motion, in: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Washington, DC, 2004, pp. 118 – 122.
[11]W. Chen, S.F. Chang, Motion trajectory matching of video objects, in: Proceedings of SPIE/ISamp;T Storage and Retrieval for Media Databases, San Jose, CA, 2000, pp. 544 – 553.
[12]Rao, C.; Yilmaz, A.; Shah, M.: View-invariant representation and recognition of actions, Int. J. Comput. vision 50, No. 2, 203-226 (2002) · Zbl 1012.68779 · doi:10.1023/A:1020350100748
[13]Shim, C. B.; Chang, J. W.: A spatio-temporal representation scheme for modeling moving objects in video data, Lecture notes in computer science 1961, 104-118 (2000) · Zbl 0988.68765
[14]Kindratenko, V. V.: On using functions to describe the shape, J. math. Imaging vision 18, No. 33, 225-245 (2003) · Zbl 1020.68081 · doi:10.1023/A:1022843426320
[15]Bribiesca, E.: A chain code for representing 3D curves, Pattern recognition 33, No. 5, 755-765 (2000)
[16]P.R.G. Harding, T.J. Ellis, Recognizing hand gesture using Fourier descriptors, in: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, Cambridge, UK, 2004, pp. 286 – 289.
[17]Chuang, G.; Kuo, C. C.: Wavelet descriptor of planar curves: theory and applications, IEEE trans. Image process. 5, No. 1, 56-70 (1996)
[18]Wunsch, P.; Laine, A. F.: Wavelet descriptors for multiresolution recognition of handprinted characters, Pattern recognition 28, No. 8, 1237-1249 (1995)
[19]F. Mokhtarian, S. Abbasi, J. Kittler, Robust and efficient shape indexing through curvature scale space, in: Proceedings of British Machine Vision Conference, Edinburgh, UK, 1996, pp. 53 – 62.
[20]Hu, M. K.: Visual pattern recognition by moment invariants, IEEE trans. Inf. theory 8, No. 2, 179-187 (1962) · Zbl 0102.13304
[21]Aleotti, J.; Caselli, S.: Robust trajectory learning and approximation for robot programming by demonstration, Robotics autonomous syst. 54, No. 5, 409-413 (2006)
[22]Cohen, F. S.; Huang, Z.; Yang, Z.: Invariant matching and identification of curves using B-splines curve representation, IEEE trans. Image process. 4, No. 1, 1-10 (1995)
[23]Shin, M. C.; Tsap, L. V.; Goldgof, D. B.: Gesture recognition using Bézier curves for visualization navigation from registered 3D data, Pattern recognition 37, No. 5, 1011-1024 (2004)
[24]Mikolajczyk, K.; Schmid, C.: A performance evaluation of local descriptors, IEEE trans. Pattern anal. Mach intell. 27, No. 10, 1615-1630 (2005)
[25]Zhang, D.; Lu, G.: Review of shape representation and description techniques, Pattern recognition 37, No. 1, 1-19 (2004)
[26]Calabi, E.; Olver, P. J.; Shakiban, C.; Tannenbaum, A.; Haker, S.: Differential and numerically invariant signature curves applied to object recognition, Int. J. Comput. vision 26, No. 2, 107-135 (1998)
[27]Boutin, M.: Numerically invariant signature curves, Int. J. Comput. vision 40, No. 3, 235-248 (2000) · Zbl 1012.68707 · doi:10.1023/A:1008139427340
[28]Jolliffe, I.: Principal component analysis, (1986)
[29]Yang, J.; Zhang, D.; Yang, J. Y.; Fragni, A. F.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition, IEEE trans. Pattern anal. Mach intell. 26, No. 1, 131-137 (2004)
[30]J.A. Bilmes, A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, Int. Comput. Sci. Inst. TR-97-021
[31]H.G. Sung, Gaussian mixture regression and classification, Ph.D. Dissertation, Rice University, 2004.
[32]Vlachos, M.; Kollios, G.; Gunopulos, D.: Elastic translation invariant matching of trajectories, Mach learn. 58, No. 2 – 3, 301-334 (2005) · Zbl 1075.68080 · doi:10.1007/s10994-005-5830-9
[33]Guéziec, A.; Ayache, N.: Smoothing and matching of 3d space curves, Int. J. Comput. vision 12, No. 1, 79-104 (1994)
[34]L.J. Latecki, V. Megalooikonomou, Q. Wang, R. Lakaemper, C.A. Ratanamahatana, E. Keogh, Elastic partial matching of time series, in: Proceedings of European Conference on Principles and Practice in Knowledge Discovery in Databases, Porto, Portugal, 2005, pp. 577 – 584.
[35]G.R. Bradski, Computer vision face tracking as a component of a perceptual user interface, in: Proceedings of Workshop on Applications of Computer Vision, Princeton, NJ, 1998, pp. 214 – 219.
[36]UCI KDD ASL Archive, [Online], Available: nbsp; http://kdd.ics.uci.edu/databases/auslan2/auslan.htmlnbsp;.
[37]Ikeuchi, K.; Suehiro, T.: Toward an assembly plan from observation part I: Task recognition with polyhedral objects, IEEE trans. Robotics automation 10, No. 3, 368-385 (1994)
[38]Friedrich, H.; Munch, S.; Dillmann, R.; Bocionek, S.; Sassin, M.: Robot programming by demonstration (RPD): supporting the induction by human interaction, Mach learn. 23, No. 2 – 3, 163-189 (1996)
[39]C.A. Acosta Calderon, H. Hu, Robot imitation from human body movements, in: Proceedings of the 3rd International Symposium on Imitation in Animals and Artifacts, AISB’05 Convention, Hatfield, England, 2005, pp. 1 – 9.
[40]Pisokas, J.; Gu, D.; Hu, H.: Learning to plan for robots using generalized representations, Int. J. Ind. robot 33, No. 4, 270-277 (2006)