zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Wave propagation in the presence of empty cracks in an elastic medium. (English) Zbl 1162.74022
Summary: This paper proposes the use of a traction boundary element method (TBEM) to evaluate 3D wave propagation in unbounded elastic media containing cracks whose geometry does not change along one direction. The proposed formulation is developed in the frequency domain and handles the thin-body difficulty presented by the classical boundary element method (BEM). The empty crack may have any geometry and orientation and may even exhibit null thickness. Implementing this model yields hypersingular integrals, which are evaluated here analytically, thereby surmounting one of the drawbacks of this formulation. The TBEM formulation enables the crack to be modelled as a single line, allowing the computation of displacement jumps in the opposing sides of the crack. Furthermore, if this formulation is combined with the classical BEM formulation, the displacements in the opposing sides of the crack can be computed by modelling the crack as a closed empty thin body.
MSC:
74J10Bulk waves (solid mechanics)
74R10Brittle fracture
74S15Boundary element methods in solid mechanics
References:
[1]Aliabadi MH (1997) Boundary element methods formulations in fracture mechanics. Appl Mech Rev 50:93–96 · doi:10.1115/1.3101690
[2]Aliabadi MH (1997) A new generation of boundary element methods in fracture mechanics. Int J Fracture 86:91–125 · doi:10.1023/A:1007381025099
[3]António J, Tadeu A (2002) 3D Seismic response of a limited valley via BEM using 2.5D analytical green’s functions for an infinite free-rigid layer. J Soil Dyn Earthquake Eng 22:659–673 · doi:10.1016/S0267-7261(02)00057-X
[4]Bouchon M, Aki K (1977) Discrete wave-number representation of seismic-source wave field. Bull Seism Soc Am 67:259–277
[5]Budreck DE, Achenbach JD (1988) Scattering from three-dimensional planar cracks by the boundary integral equation method. J Appl Mech 55:405–412 · Zbl 0663.73073 · doi:10.1115/1.3173690
[6]Burton AJ, Miller GF (1971) The application of the integral equation method to the numerical solution of some exterior boundary value problems. Proc R Soc London Ser A 323:201–210 · Zbl 0235.65080 · doi:10.1098/rspa.1971.0097
[7]Chien CC, Rajiyah H, Atluri SN (1990) An effective method for solving the hypersingular integral equations in 3D acoustics. J Acoustic Soc Am 88(2):918–937 · doi:10.1121/1.399743
[8]Cruse TA (1987) Boundary Element Analysis in Computational Fracture Mechanics. Kluwer Academic Publishers
[9]Cruse TA, Richardson JD (1996) Nonsingular somigliana stress identities in elasticity. Int J Numer Meth Eng 39:3273–3304 · doi:10.1002/(SICI)1097-0207(19961015)39:19<3273::AID-NME999>3.0.CO;2-7
[10]Dell’erba DN, Aliabadi MH, Rooke DP (1998) Dual boundary element method for three-dimensional thermoelastic crack problems. Int J Fracture 94:89–101 · doi:10.1023/A:1007572726097
[11]Dominguez J, Gallego R (1992) Time domain boundary element method for dynamic stress intensity factor computations. Int J Numer Meth Eng 33:635–647 · Zbl 0825.73906 · doi:10.1002/nme.1620330309
[12]Dominguez J, Ariza MP, Gallego R (2000) Flux and traction boundary elements without hypersingular or strongly singular integrals. Int J Numer Meth Eng 48:111–135 · doi:10.1002/(SICI)1097-0207(20000510)48:1<111::AID-NME870>3.0.CO;2-Y
[13]Fedelinski P, Aliabadi MH, Rooke DP (1994) The dual boundary element method: Ĵ-integral for dynamic stress intensity factors. Int J Fracture 65(4):369–381 · doi:10.1007/BF00012375
[14]Fedelinski P, Aliabadi MH, Rooke DP (1995) A sinlge-region time domain BEM for dynamic crack problems. Int J Solids Struct 32:3555–3571 · Zbl 0918.73306 · doi:10.1016/0020-7683(95)00015-3
[15]Fedelinski P, Aliabadi MH, Rooke DP (1996) The Laplace transform DBEM for mixed-mode dynamic crack analysis. Comp Struct 59:1021–1031 · Zbl 0918.73299 · doi:10.1016/0045-7949(95)00347-9
[16]Fedelinski P, Aliabadi MH, Rooke DP (1996) Boundary element formulations for the dynamic analysis of cracked structures. EABE – Eng Anal Bound Elem 17:45–56
[17]Guiggiani M (1998) Formulation and numerical treatment of boundary integral equations with hypersingular kernels. Singular Integrals in Boundary Element Methods, Computational Mechanics Publications, Southampton (UK) & Boston (USA)
[18]Kausel E, Roesset JM (1992) Frequency domain analysis of undamped systems. J Eng Mech ASCE 118(4):721–734 · doi:10.1061/(ASCE)0733-9399(1992)118:4(721)
[19]Lutz E, Ingraffea AR, Gray LJ (1992) Use of ’simple solutions’ for boundary integral methods in elasticity and fracture analysis. Int J Numer Meth Eng 35:1737–1751 · Zbl 0767.73084 · doi:10.1002/nme.1620350902
[20]Manolis GD, Beskos DE (1988) Boundary Element Methods in Elastodynamics. Unwin Hyman (sold to Chapman and Hall), London
[21]Mi Y, Aliabadi MH (1992) Dual boundary element method for three-dimensional fracture mechanics analysis. EABE – Eng Anal Bound Elem 10:161–171
[22]Pao YH, Mow CC (1973) Diffraction of Elastic Waves and Dynamic Stress Concentrations. Crane and Russak
[23]Partridge PE, Brebbia CA, Wrobel LC (1992) The Dual Reciprocity Boundary Element Methods. CMP, Southampton
[24]Portela A, Aliabadi MH, Rooke DP (1992) The dual boundary element method: effective implementation for crack problems. Int J Numer Meth Eng 33:1269–1287 · Zbl 0825.73908 · doi:10.1002/nme.1620330611
[25]Prosper D, Kausel E (2001) Wave scattering by cracks in laminated media. In: Atluri SN, Nishioka T, Kikuchi M (eds), CD: Advances in Computational Engineering and Sciences. Proceedings of the international Conference on Computational Engineering and Science ICES’01, Puerto Vallarta, Mexico,19-25/08/2001. Tech Science Press
[26]Prosper D (2001) Modeling and Detection of Delaminations in Laminated Plates. PhD Thesis, MIT, Cambridge
[27]Pyl L, Clouteau D, Degrande G (2004) A weakly singular boundary integral equation inelastodynamics for heterogeneous domains mitigating ficticious eigenfrequencies. EABE – Eng Anal Bound Elem 28(12):1493–1513
[28]Qian ZY, Han ZD, Ufimtsev P, Atluri SN (2004) Non-hyper-singular boundary integral equations for acoustic problems, implemented by the collocation-based boundary element method. CMES – Comput Model Eng 6(2):133–144
[29]Rudolphi TJ (1991) The use of simple solutions in the regularisation of hypersingular boundary integral equations. Math Comp Model 15:269–278 · Zbl 0728.73081 · doi:10.1016/0895-7177(91)90071-E
[30]Sladek V, Sladek J (1984) Transient elastodynamic three- dimensional problems in cracked bodies. Appl Math Model 8:2–10 · Zbl 0525.73110 · doi:10.1016/0307-904X(84)90169-0
[31]Sládek V, Sládek J (1987) A boundary integral equation method for dynamic crack problems. Eng Fracture Mech 27(3):269–277 · doi:10.1016/0013-7944(87)90145-7
[32]Sladek V, Sladek J, Tanaka M (1992) Numerical solution of nonsingular BIE for crack problems. In: Brebbia CA, Domínguez J, Paris F (eds) Boundary Elements XIV. vol. 2, Computational Mechanics Publications, Southampton
[33]Sladek J, Sladek V (2000) Nonsingular traction BIEs for crack problems in elastodynamics. Comput Mech 25:590–599 · Zbl 0985.74061 · doi:10.1007/s004660050506
[34]Stamos AA, Beskos DE (1996) 3-D seismic response analysis of long lined tunnels in half-space. J Soil Dyn Earthquake Eng 15:111–118 · doi:10.1016/0267-7261(95)00025-9
[35]Tadeu AJB (1992) Modelling and Seismic Imaging of Buried Structures. PhD Thesis, MIT, Cambridge
[36]Tadeu A, Santos P, Kausel E (1999) Closed-form Integration of Singular Terms for Constant, Linear and Quadratic Boundary Elements - Part I: SH Wave Propagation. EABE – Eng Anal Bound Elem 23(8):671–681
[37]Tadeu A, Santos P, Kausel E (1999) Closed-form Integration of Singular Terms for Constant, Linear and Quadratic Boundary Elements - Part II: SV-P Wave Propagation. EABE – Eng Anal Bound Elem 23(9):757–768
[38]Tadeu A, Kausel E (2000) Green’s Functions for Two-and-a-half Dimensional Elastodynamic Problems. J Eng Mech, ASCE 126(10):1093–1097
[39]Tadeu A, Godinho L, Santos P (2001) Performance of the BEM solution in 3D acoustic wave scattering. J Adv Eng Software 32:629–639 · Zbl 0972.76520 · doi:10.1016/S0965-9978(01)00010-2
[40]Tadeu A, António J, Kausel E (2002) 3D Scattering of waves by a cylindrical irregular cavity of infinite length in a homogeneous elastic medium. Comp Method Appl Mech Eng 191(27–28): 3015–3033
[41]Takakuda K (1983) Diffraction of plane harmonic waves by cracks. JSME 26(214): 487–493
[42]Tanaka M, Sladek V, Sladek J (1994) Regularization techniques applied to boundary element methods. Appl Mech Rev 47:457–499 · doi:10.1115/1.3111062
[43]Watson JO (1995) Singular boundary elements for the analysis of cracks in plane strain. Int J Numer Meth Eng 38:2389–2411 · Zbl 0855.73079 · doi:10.1002/nme.1620381406
[44]Wu TW, Seybert AF, Wan GC (1991) On the numerical implementation of a Cauchy principal value integral to insure a unique solution for acoustic radiation and scattering. J Acoust Soc Am 90:554–560 · doi:10.1121/1.401283
[45]Yan ZY, Hung KC, Zheng H (2003) Solving the hypersingular boundary integral equation in three-dimensional acoustics using a regularization relationship. J Acoust Soc Am 113(5):2674–2683 · doi:10.1121/1.1560164
[46]Young A (1992) A single-domain boundary element method for 3-D elastostatic crack analysis using continuous elements. Int J Numer Meth Eng 39:1265–1293 · doi:10.1002/(SICI)1097-0207(19960430)39:8<1265::AID-NME902>3.0.CO;2-N