×

Extended meshfree methods without branch enrichment for cohesive cracks. (English) Zbl 1162.74053

Summary: We propose an extended meshless method for both static and dynamic cohesive cracks. This new method does not need any crack tip enrichment to guarantee that the crack closes at the tip. All cracked domains of influence are enriched by only the sign function. The domain of influence which includes a crack tip is modified so that the crack tip is always positioned at its edge. The modification is only applied for the discontinuous displacement field and the continuous field is kept unchanged. In addition to the new method, the use of Lagrange multiplier is explored to achieve the same goal. The crack is extended beyond the actual crack tip so that the domains of influence containing the crack tip are completely cut. It is enforced that the crack opening displacement vanishes along the extension of the crack. These methods are successfully applied to several well-known static and dynamic problems.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74R10 Brittle fracture

Software:

XFEM
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Arrea M, Ingraffea AR (1982) Mixed-mode crack propagation in mortar and concrete. Technical Report 81-13, Department of Structural Engineering, Cornell University, Ithaka, NY
[2] Bažant, ZP; Belytschko, T., Wave propagation in a strain-softening bar: Exact solution, J Eng Mech ASCE, 111, 3, 381-389 (1985) · doi:10.1061/(ASCE)0733-9399(1985)111:3(381)
[3] Baž zant, ZP; Caner, FC, Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. I: Theory, J Eng Mech ASCE, 131, 1, 31-40 (2005) · doi:10.1061/(ASCE)0733-9399(2005)131:1(31)
[4] Bažzant, ZP; Zi, G., Asymptotic stress intensity factor density profiles for smeared-tip method for cohesive fracture, Int J Fract, 119, 145-159 (2003) · doi:10.1023/A:1023947027391
[5] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int J Numer Meth Eng, 45, 5, 601-620 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[6] Belytschko, T.; Chen, H.; Xu, J.; Zi, G., Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment, Int J Numer Meth Eng, 58, 12, 1873-1905 (2003) · Zbl 1032.74662 · doi:10.1002/nme.941
[7] Belytschko, T.; Fleming, M., Smoothing, enrichment and contact in the element-free Galerkin method, Comput Struct, 71, 2, 173-195 (1999) · doi:10.1016/S0045-7949(98)00205-3
[8] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput Methods Appl Mech Eng, 139, 3-47 (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[9] Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley New York · Zbl 0959.74001
[10] Belytschko, T.; Lu, YY; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 2, 229-256 (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[11] Belytschko, T.; Lu, YY; Gu, L., Crack-propagation by element-free Galerkin methods, Eng Fract Mech, 51, 2, 295-315 (1995) · doi:10.1016/0013-7944(94)00153-9
[12] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int J Numer Methods Eng, 50, 4, 993-1013 (2001) · Zbl 0981.74062 · doi:10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
[13] Belytschko, T.; Organ, D.; Gerlach, C., Element-free Galerkin methods for dynamic fracture in concrete, Comput Methods Appl Mech Eng, 187, 3-4, 385-399 (2000) · Zbl 0962.74077 · doi:10.1016/S0045-7825(00)80002-X
[14] Camacho, G.; Ortiz, M., Computational modelling of impact damage in brittle materials, Int J Solids Struct, 33, 2899-2938 (1996) · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[15] Carpinteri A, Valente S, Ferrara G, Imperato L (1992) Fracture mechanics of concrete structures, Elsevier New York, 351-360
[16] Chessa, J.; Wang, H.; Belytschko, T., On the construction of blending elements for local partition of unity enriched finite elements, Int J Numer Methods Eng, 57, 7, 1015-1038 (2003) · Zbl 1035.65122 · doi:10.1002/nme.777
[17] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method, Int J Numer Methods Eng, 48, 1741-1760 (2000) · Zbl 0989.74066 · doi:10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
[18] Dolbow, JE; Devan, A., Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test, Int J Numer Methods Eng pages, 59, 1, 47-67 (2003) · Zbl 1047.74055 · doi:10.1002/nme.862
[19] Falk, ML; Needleman, A.; Rice, JR, A critical evaluation of cohesive zone models of dynamic fracture, J Phys IV., 11, PR5, 43-50 (2001)
[20] FIB (1999) Structural concrete: Textbook on behaviour, design and performance updated knowledge of the CEB/FIP model code 1990. Vol. 1: Introduction – design process – materials International federation for structural concrete (fib), Lausanne, Switzerland
[21] Fineberg, J.; Sharon, E.; Cohen, G., Crack front waves in dynamic fracture., Int J Fract, 121, 1-2, 55-69 (2003) · doi:10.1023/A:1026296929110
[22] Fleming, M.; Chu, YA; Moran, B.; Belytschko, T., Enriched element-free Galerkin methods for crack tip fields, Int J Numer Methods Eng, 40, 1483-1504 (1997) · doi:10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
[23] Hao, S.; Liu, WK; Qian, D., Localization-induced band and cohesive model, J Appl Mech ASME, 67, 803-812 (2000) · Zbl 1110.74469 · doi:10.1115/1.1325413
[24] John, R.; Shah, SP, Mixed mode fracture of concrete subjected to impact loading, J Struct Eng ASCE, 116, 3, 585-602 (1990)
[25] Laborde, P.; Pommier, J.; Renard, Y.; Salaün, M., High-order extended finite element method for cracked domains., Int J Numer Methods Eng, 64, 3, 354-381 (2005) · Zbl 1181.74136 · doi:10.1002/nme.1370
[26] Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, Cambridge ISBN 0 521 32853 5 · Zbl 0743.73002
[27] Li, S.; Liu, WK, Meshfree and particle methods (2004), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York · Zbl 1073.65002
[28] Liu, WK; Hao, S.; Belytschko, T.; Li, S.; Chang, CT, Multi-scale methods, Int J Numer Methods Eng, 47, 7, 1343-1361 (2000) · Zbl 0976.74080 · doi:10.1002/(SICI)1097-0207(20000310)47:7<1343::AID-NME828>3.0.CO;2-W
[29] Liu, WK; Jun, S.; Zhang, YF, Reproducing kernel particle methods, Int J Numer Methods Eng, 20, 1081-1106 (1995) · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[30] Melenk, JM; Babuž ska, I., The partition of unity finite element method: Basic theory and application, Comput Methods Appl Mech Eng, 139, 1-4, 289-314 (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[31] Moës, N.; Belytschko, T., Extended finite element method for cohesive crack growth, Eng Fract Mech, 69, 7, 813-833 (2002) · doi:10.1016/S0013-7944(01)00128-X
[32] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing., Int J Numer Methods Eng, 46, 1, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[33] Nooru-Mohamed MB (1992) Mixed-mode fracture of concrete: An experimental approach. PhD thesis, Delft University of Technology
[34] Oliver, J.; Huespe, AE; Samaniego, E.; Chaves, EMV, Continuum approach to the numerical simulation of material failure in concrete, Int J Numer Anal Methods Geomech, 28, 7-8, 609-632 (2004) · Zbl 1112.74493 · doi:10.1002/nag.365
[35] Ortiz, M.; Pandolfi, A., Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis., Int J Numer Methods Eng, 44, 9, 1267-1282 (1999) · Zbl 0932.74067 · doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
[36] Pandolfi, A.; Guduru, PR; Ortiz, M., Three dimensional cohesive-element analysis and experiments of dynamic fracture in C300 steel, Int J Solids Struct, 37, 3733-3760 (2000) · doi:10.1016/S0020-7683(99)00155-9
[37] Patzák, B.; Jirásek, M., Adaptive resolution of localized damage in quasi-brittle materials, J Eng Mech ASCE, 130, 6, 720-732 (2004) · doi:10.1061/(ASCE)0733-9399(2004)130:6(720)
[38] Rabczuk, T.; Belytschko, T., Cracking paricles: A simplified meshfree method for arbitrary evolving cracks., Int J Numer Methods Eng, 61, 2316-2343 (2004) · Zbl 1075.74703 · doi:10.1002/nme.1151
[39] Rabczuk T, Belytschko T (2006) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng (in press) · Zbl 1128.74051
[40] Rabczuk T, Zi G (2006) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech (in press) · Zbl 1161.74055
[41] Ravi-Chandar, K., Dynamic fracture of nominally brittle materials, Int J Fract, 90, 1-2, 83-102 (1998) · doi:10.1023/A:1007432017290
[42] Sethian, JA, Level sets methods & fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0973.76003
[43] Sharon, E.; Fineberg, J., Microbranching instability and the dynamic fracture of brittle materials, Phys Rev B, 54, 10, 7128-7139 (1996) · doi:10.1103/PhysRevB.54.7128
[44] Shi, Z., Numerical analysis of mixed-mode fracture in concrete using extended fictitious crack model., J Struct Eng ASCE, 130, 11, 1738-1747 (2004) · doi:10.1061/(ASCE)0733-9445(2004)130:11(1738)
[45] Simonsen, BC; Li, S., Meshfree modeling of ductile fracture, Int J Numer Methods Eng, 60, 1425-1450 (2004) · Zbl 1060.74673 · doi:10.1002/nme.1009
[46] Stazi, F.; Budyn, E.; Chessa, J.; Belytschko, T., XFEM for fracture mechanics with quadratic elements, Comput Mech, 31, 38-48 (2003) · Zbl 1038.74651 · doi:10.1007/s00466-002-0391-2
[47] Strouboulis, T.; Copps, K.; Babuž ska, I., The generalized finite element method: An example of its implementation and illustration of its performance, Int J Numer Methods Eng, 47, 8, 1401-1417 (2000) · Zbl 0955.65080 · doi:10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
[48] Ventura, G.; Budyn, E.; Belytschko, T., Vector level set for description of propagating cracks in finite elements., Int J Numer Methods Eng, 58, 10, 1571-1592 (2003) · Zbl 1032.74687 · doi:10.1002/nme.829
[49] Ventura, G.; Xu, JX; Belytschko, T., A vector level set method and new discontinuity approximations for crack growth by EFG, Int J Numer Methods Eng, 54, 6, 923-944 (2002) · Zbl 1034.74053 · doi:10.1002/nme.471
[50] Xu, X-P; Needleman, A., Numerical simulation of fast crack growth in brittle solids, J Mech Phys Solids, 42, 9, 1397-1434 (1994) · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5
[51] Zi, G.; Belytschko, T., New crack-tip elements for XFEM and applications to cohesive cracks, Int J Numer Methods Eng, 57, 2221-2240 (2003) · Zbl 1062.74633 · doi:10.1002/nme.849
[52] Zi, G.; Chen, H.; Xu, J.; Belytschko, T., The extended finite element method for dynamic fractures, Shock Vibration, 12, 1, 9-23 (2005)
[53] Zi, G.; Song, J-H; Budyn, E.; Lee, S-H; Belytschko, T., A method for growing multiple cracks without remeshing and its application to fatigue crack growth, Modell Simul Materials Sci Eng, 12, 901-915 (2004) · doi:10.1088/0965-0393/12/5/009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.