zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The simulation of dynamic crack propagation using the cohesive segments method. (English) Zbl 1162.74438
Summary: The cohesive segments method is a finite element framework that allows for the simulation of the nucleation, growth and coalescence of multiple cracks in solids. In this framework, cracks are introduced as jumps in the displacement field by employing the partition of unity property of finite element shape functions. The magnitude of these jumps are governed by cohesive constitutive relations. In this paper, the cohesive segments method is extended for the simulation of fast crack propagation in brittle solids. The performance of the method is demonstrated in several examples involving crack growth in linear elastic solids under plane stress conditions: tensile loading of a block; shear loading of a block and crack growth along and near a bi-material interface.
MSC:
74R10Brittle fracture
74S05Finite element methods in solid mechanics
References:
[1]Babuška, I.; Melenk, J. M.: The partition of unity method, Int. J. Numer. methods eng. 40, No. 4, 727-758 (1997) · Zbl 0949.65117 · doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
[2]Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. methods eng. 45, No. 5, 601-620 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[3]Belytschko, T.; Chiapetta, R. L.; Bartel, H. D.: Efficient large scale non-linear transient analysis by finite elements, Int. J. Numer. methods eng. 10, No. 3, 579-596 (1976)
[4]Belytschko, T.; Liu, W. K.; Moran, B.: Nonlinear finite elements for continua and structures, (2000)
[5]Camacho, G. T.; Ortiz, M.: Computational modelling of impact damage in brittle materials, Int. J. Solids struct. 33, 2899-2938 (1996) · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[6]Coker, D.; Rosakis, A. J.; Needleman, A.: Dynamic crack growth along a polymer composite-homalite interface, J. mech. Phys. solids 51, No. 3, 425-460 (2003) · Zbl 1015.74521 · doi:10.1016/S0022-5096(02)00082-0
[7]Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T.: Arbitrary branched and intersecting cracks with the extended finite element method, Int. J. Numer. methods eng. 48, No. 12, 1741-1760 (2000) · Zbl 0989.74066 · doi:10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
[8]Falk, M. L.; Needleman, A.; Rice, J. R.: A critical evaluation of cohesive zone models of dynamic fracture, J. phys. IV 11, No. Pr5, 43-50 (2001)
[9]Freund, L. B.: Dynamic fracture mechanics, (1998)
[10]Gao, H. J.: Surface roughening and branching instabilities in dynamic fracture, J. mech. Phys. solids 41, 457-486 (1993)
[11]Gao, H. J.: A theory of local limiting speed in dynamic fracture, J. mech. Phys. solids 44, 1453-1474 (1996)
[12]Kalthoff, J. A.; Bürgel, A.: Influence of loading rate on shear fracture toughness for failure mode transition, Int. J. Impact eng. 30, 957-971 (2004)
[13]Kalthoff, J. K.; Winkler, S.: Failure mode transition at high rates of loading, Proceedings of the international conference on impact loading and dynamic behaviour of materials, 43-56 (1988)
[14]Li, S. F.; Liu, W. K.; Rosakis, A. J.; Belytschko, T.; Hao, W.: Mesh free Galerkin simulation of dynamic shear band propagation and failure mode transition, Int. J. Solids struct. 39, 1213-1240 (2002) · Zbl 1090.74698 · doi:10.1016/S0020-7683(01)00188-3
[15]Mason, J. J.; Rosakis, A. J.; Ravichandran, G.: Full field measurements of the dynamic deformation field around a growing adiabatic shear band at the tip of a dynamically loaded crack or notch, J. mech. Phys. solids 42, 1679-1697 (1994)
[16]Needleman, A.: A continuum model for void nucleation by inclusion debonding, J. appl. Mech. 54, 525-531 (1987) · Zbl 0626.73010 · doi:10.1115/1.3173064
[17]Needleman, A.; Tvergaard, V.: Analysis of a brittle-ductile transition under dynamic shear loading, Int. J. Solids struct. 32, 2571-2590 (1995) · Zbl 0919.73222 · doi:10.1016/0020-7683(94)00283-3
[18]Papoulia, K. D.; Sam, S. H.; Vavasis, S. A.: Time-continuous cohesive interface finite elements in explicit dynamics, Int. J. Numer. meth. Eng. 58, No. 5, 679-701 (2003)
[19]Papoulia, K. D.; Vavasis, S. A.; Ganguly, P.: Spatial convergence of crack nucleation using a cohesive finite element model on a pinwheel-based mesh, Int. J. Numer. meth. Eng. 67, 1-16 (2006) · Zbl 1110.74854 · doi:10.1002/nme.1598
[20]Ravi-Chandar, K.; Knauss, W. G.: An experimental investigation into dynamic fracture: I: Crack initiation and arrest, Int. J. Frac. 25, No. 4, 247-262 (1984)
[21]Ravi-Chandar, K.: On the failure mode transitions in polycarbonate under dynamic mixed-mode loading, Int. J. Solids struct. 32, 925-938 (1995) · Zbl 0866.73059 · doi:10.1016/0020-7683(94)00169-W
[22]Remmers, J.J.C., 2006. Discontinuities in Materials and Structures, A unifying computational approach. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
[23]Remmers, J. J. C.; Deborst, R.; Needleman, A.: A cohesive segments method for the simulation of crack growth, Comput. mech. 31, 69-77 (2003) · Zbl 1038.74679 · doi:10.1007/s00466-002-0394-z
[24]Sharon, E.; Fineberg, J.: The dynamics of fast fracture, Adv. eng. Mater. 1, 119-122 (1999)
[25]Sharon, E.; Gross, S. P.; Fineberg, J.: Local crack branching as a mechanism for instability in dynamic fracture, Phys. rev. Lett. 74, 5096-5099 (1995)
[26]Wells, G. N.; Sluys, L. J.: A new method for modelling cohesive cracks using finite elements, Int. J. Numer. methods eng. 50, No. 12, 2667-2682 (2001) · Zbl 1013.74074 · doi:10.1002/nme.143
[27]Xu, X. P.; Needleman, A.: Numerical simulations of fast crack growth in brittle solids, J. mech. Phys. solids 42, 1397-1434 (1994) · Zbl 0825.73579 · doi:10.1016/0022-5096(94)90003-5