zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Spatial patterns in a discrete-time SIS patch model. (English) Zbl 1162.92033
Summary: How do spatial heterogeneity, habitat connectivity, and different movement rates among subpopulations combine to influence the observed spatial patterns of an infectious disease? To find out, we formulated and analyzed a discrete-time SIS patch model. Patch differences in local disease transmission and recovery rates characterize whether patches are low-risk or high-risk, and these differences collectively determine whether the spatial domain, or habitat, is low-risk or high-risk. In low-risk habitats, the disease persists only when the mobility of infected individuals lies below some threshold value, but for high-risk habitats, the disease always persists. When the disease does persist, then there exists an endemic equilibrium (EE) which is unique and positive everywhere. This EE tends to a spatially inhomogeneous disease-free equilibrium (DFE) as the mobility of susceptible individuals tends to zero. The limiting DFE is nonempty on all low-risk patches and it is empty on at least one high-risk patch. Sufficient conditions for the limiting DFE to be empty on other high-risk patches are given in terms of disease transmission and recovery rates, habitat connectivity, and the infected movement rate. These conditions are also illustrated using numerical examples.
MSC:
92D30Epidemiology
92D40Ecology
37N25Dynamical systems in biology
References:
[1]Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L.: Asymptotic profile of the steady states for an SIS epidemic patch model. SIAM J. Appl. Math. 67, 1283–1309 (2007) · Zbl 1121.92054 · doi:10.1137/060672522
[2]Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L.: Asymptotic profile of the steady states for an SIS epidemic reaction-diffusion model. Discr. Cont. Dyn. Sys. A. 21, 1–20 (2008) · Zbl 1146.92028 · doi:10.3934/dcds.2008.21.1
[3]Allen L.J.S., Burgin A.: Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math. Biosci. 163, 1–33 (2000) · Zbl 0978.92024 · doi:10.1016/S0025-5564(99)00047-4
[4]Allen L.J.S., Jones M.A., Martin C.F.: A discrete-time model with vaccination for a measles epidemic. Math. Biosci. 105, 111–131 (1991) · Zbl 0728.92023 · doi:10.1016/0025-5564(91)90051-J
[5]Allen L.J.S., Kirupaharan N., Wilson S.M.: SIS epidemic models with multiple pathogen strains. J. Differ. Equ. Appl. 10, 53–75 (2004) · Zbl 1047.92041 · doi:10.1080/10236190310001603680
[6]Allen, L.J.S., van den Driessche, P.: The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl. (2008) (in press)
[7]Arino J., Jordan R., van den Driessche P.: Quarantine in a multi-species epidemic model with spatial dynamics. Math. Biosci. 206, 46–60 (2007) · Zbl 1124.92042 · doi:10.1016/j.mbs.2005.09.002
[8]Caraco T., Duryea M., Gardner G., Maniatty W., Szymanski B.K.: Host spatial heterogeneity and extinction of an SIS epidemic. J. Theor. Biol. 192, 351–361 (1998) · doi:10.1006/jtbi.1998.0663
[9]Carrillo C., Fife P.: Spatial effects in discrete generation population models. J. Math. Biol. 50, 161–188 (2005) · Zbl 1080.92054 · doi:10.1007/s00285-004-0284-4
[10]Castillo-Chavez C., Yakubu A.-A.: Dispersal, disease and life-history evolution. Math. Biosci. 173, 35–53 (2001) · Zbl 1005.92029 · doi:10.1016/S0025-5564(01)00065-7
[11]Castillo-Chavez C., Yakubu A.-A.: Intraspecific competition, dispersal, and disease dynamics in discrete-time patchy environments. In: Castillo-Chavez, C., Blower, S., Driessche, P., Kirschner, D., Yakubu, A.-A. (eds) Mathematical Approaches for Emerging and Reemerging Infectious Diseases An Introduction, pp. 165–181. Springer, New York (2002)
[12]Cushing, J.M.: An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, PA (1998)
[13]Cushing J.M., Yicang Z.: The net reproductive value and stability in structured population models. Nat. Resour. Model. 8, 1–37 (1994)
[14]de Jong M.C.M., Diekmann O., Heesterbeek J.A.P.: The computation of R 0 for discrete-time epidemic models with dynamic heterogeneity. Math. Biosci. 119, 97–114 (1994) · Zbl 0791.92019 · doi:10.1016/0025-5564(94)90006-X
[15]Dhirasakdanon T., Thieme H., van den Driessche P.: A sharp threshold for disease persistence in host metapopulations. J. Biol. Dyn. 1, 363–378 (2007) · doi:10.1080/17513750701605465
[16]Diekmann O., Heesterbeek J.A.P.: Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000)
[17]Diekmann O., Heesterbeek J.A.P., Metz J.A.J.: On the definition and the computation of the basic reproduction ratio 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[18]Doebeli M., Ruxton G.D.: Stabilization through pattern formation in metapopulations with long-range dispersal. Proc. R. Soc. Lond. B. 265, 1325–1332 (1998) · doi:10.1098/rspb.1998.0437
[19]Emmert K.E., Allen L.J.S.: Population persistence and extinction in a discrete-time, stage-structured epidemic model. J. Differ. Equ. Appl. 10, 1177–1199 (2004) · Zbl 1067.92052 · doi:10.1080/10236190410001654151
[20]Gantmacher F.R.: The Theory of Matrices, vol. II. Chelsea, New York (1960)
[21]Hsieh Y.-H., van den Driessche P., Wang L.: Impact of travel between patches for spatial spread of disease. Bull. Math. Biol. 69, 1355–1375 (2007) · Zbl 05265689 · doi:10.1007/s11538-006-9169-6
[22]Lewis M.A., Rencławowicz J., van den Driessche P.: Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 68, 3–23 (2006) · doi:10.1007/s11538-005-9018-z
[23]Lewis M.A., Rencławowicz J., van den Driessche P., Wonham M.: A comparison of continuous and discrete-time West Nile Virus models. Bull. Math. Biol. 68, 491–509 (2006) · doi:10.1007/s11538-005-9039-7
[24]Li C.-K., Schneider H.: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 44, 450–462 (2002) · Zbl 1015.91059 · doi:10.1007/s002850100132
[25]Medlock J., Kot M.: Spreading disease: integro-differential equations old and new. Math. Biosci. 184, 201–222 (2003) · Zbl 1036.92030 · doi:10.1016/S0025-5564(03)00041-5
[26]Ortega J.M.: Matrix Theory: A Second Course. Plenum Press, New York (1987)
[27]Postnikov E.B., Sokolov I.M.: Continuum description of a contact infection spread in a SIR model. Math. Biosci. 208, 205–215 (2007) · Zbl 1116.92056 · doi:10.1016/j.mbs.2006.10.004
[28]Ruan S.: Spatial–temporal dynamics in nonlocal epidemiological models. In: Takeuchi, Y., Sato, K., Iwasa, Y. (eds) Mathematics for Life Science and Medicine, vol 2, pp. 97–122. Springer, New York (2007)
[29]Smith, H.: Monotone Dynamical Systems, An introduction to the theory of competitive and cooperative systems. American Mathematical Society, Mathematical Surveys and Monographs (1995)
[30]van den Driessche P., Watmough J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[31]Wang M.-H., Kot M., Neubert M.G.: Integrodifference equations, Allee effects, and invasions. J. Math. Biol. 44, 150–168 (2002) · Zbl 0991.92032 · doi:10.1007/s002850100116
[32]Yakubu A.-A., Castillo-Chavez C.: Interplay between local dynamics and dispersal in discrete-time metapopulation models. J. Theor. Biol. 218, 273–288 (2002) · doi:10.1006/jtbi.2002.3075