zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Uniformly exponentially stable approximations for a class of damped systems. (English) Zbl 1163.74019
Summary: We consider time semi-discrete approximations of a class of exponentially stable infinite-dimensional systems modeling, for instance, damped vibrations. It has recently been proved that for time semi-discrete systems, due to high-frequency spurious components, the exponential decay property may be lost as the time step tends to zero. We prove that, adding a suitable numerical viscosity term in the numerical scheme, one obtains approximations that are uniformly exponentially stable. This result is then combined with previous ones on space semi-discretizations to derive similar results on fully-discrete approximation schemes. Our method is mainly based on a decoupling argument of low and high frequencies, the low-frequency observability property for time semi-discrete approximations of conservative linear systems, and on the dissipativity of numerical viscosity for high-frequency components. Our methods also allow to deal directly with stabilization properties of fully discrete approximation schemes without numerical viscosity, under a suitable CFL type condition on time and space discretization parameters.
MSC:
74H15Numerical approximation of solutions for dynamical problems in solid mechanics
74H45Vibrations (dynamical problems in solid mechanics)
74S20Finite difference methods in solid mechanics