zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. (English) Zbl 1163.76010
Summary: We examine the regularity of weak solutions of quasi-geostrophic (QG) type equations with supercritical (α<1/2) dissipation (-Δ) α . This study is motivated by a recent work of L. Caffarelli and A. Vasseur, in which they study the global regularity issue for the critical (α=1/2) QG equation [arXiv: math.AP/0608447 (2006)]. Their approach successively increases the regularity levels of Leray-Hopf weak solutions: from L 2 to L , from L to Hölder (C δ ,δ>0), and from Hölder to classical solutions. In the supercritical case, Leray-Hopf weak solutions can still be shown to be L , but it does not appear that their approach can be easily extended to establish the Hölder continuity of L solutions. In order for their approach to work, we require the velocity to be in the Hölder space C 1-2α . Higher regularity starting from C δ with δ>1-2α can be established through Besov space techniques and will be presented elsewhere [P. Constantin and J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, in press].
76D03Existence, uniqueness, and regularity theory
35Q35PDEs in connection with fluid mechanics
[1]Caffarelli, L.; Silvestre, L.: An extension problem related to the fractional Laplacian, (2006)
[2]Caffarelli, L.; Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, (2006)
[3]Chae, D.: On the regularity conditions for the dissipative quasi-geostrophic equations, SIAM J. Math. anal. 37, 1649-1656 (2006) · Zbl 1141.76010 · doi:10.1137/040616954
[4]Chae, D.; Lee, J.: Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Commun. math. Phys. 233, 297-311 (2003) · Zbl 1019.86002 · doi:10.1007/s00220-002-0750-z
[5]Chen, Q.; Miao, C.; Zhang, Z.: A new Bernstein inequality and the 2D dissipative quasi-geostrophic equation, Commun. math. Phys. 271, 821-838 (2007) · Zbl 1142.35069 · doi:10.1007/s00220-007-0193-7
[6]Constantin, P.: Euler equations, Navier – Stokes equations and turbulence. Mathematical foundation of turbulent viscous flows, Lecture notes in math. 1871, 1-43 (2006) · Zbl 1190.76146 · doi:10.1007/11545989_1
[7]Constantin, P.; Cordoba, D.; Wu, J.: On the critical dissipative quasi-geostrophic equation, Indiana univ. Math. J. 50, 97-107 (2001) · Zbl 0989.86004
[8]Constantin, P.; Majda, A.; Tabak, E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity 7, 1495-1533 (1994) · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001
[9]Constantin, P.; Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. anal. 30, 937-948 (1999) · Zbl 0957.76093 · doi:10.1137/S0036141098337333
[10]Constantin, P.; Wu, J.: Regularity of hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. inst. H. Poincaré anal. Non linéaire 25, No. 6, 1103-1110 (2008) · Zbl 1149.76052 · doi:10.1016/j.anihpc.2007.10.001
[11]Córdoba, A.; Córdoba, D.: A maximum principle applied to quasi-geostrophic equations, Commun. math. Phys. 249, 511-528 (2004)
[12]Held, I.; Pierrehumbert, R.; Garner, S.; Swanson, K.: Surface quasi-geostrophic dynamics, J. fluid mech. 282, 1-20 (1995) · Zbl 0832.76012 · doi:10.1017/S0022112095000012
[13]T. Hmidi, S. Keraani, On the global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math., in press
[14]Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. math. Phys. 255, 161-181 (2005) · Zbl 1088.37049 · doi:10.1007/s00220-004-1256-7
[15]Kiselev, A.; Nazarov, F.; Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. math. 167, 445-453 (2007) · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[16]Marchand, F.; Lemarié-Rieusset, P. G.: Solutions auto-similaires non radiales pour l’équation quasi-géostrophique dissipative critique, C. R. Math. acad. Sci. Paris, ser. I 341, 535-538 (2005) · Zbl 1155.76320 · doi:10.1016/j.crma.2005.09.004
[17]Pedlosky, J.: Geophysical fluid dynamics, (1987) · Zbl 0713.76005
[18]S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995
[19]Schonbek, M.; Schonbek, T.: Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. anal. 35, 357-375 (2003) · Zbl 1126.76386 · doi:10.1137/S0036141002409362
[20]Schonbek, M.; Schonbek, T.: Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete contin. Dyn. syst. 13, 1277-1304 (2005) · Zbl 1091.35070 · doi:10.3934/dcds.2005.13.1277
[21]Wu, J.: The quasi-geostrophic equation and its two regularizations, Comm. partial differential equations 27, 1161-1181 (2002) · Zbl 1012.35067 · doi:10.1081/PDE-120004898
[22]Wu, J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. anal. 36, 1014-1030 (2004/2005) · Zbl 1083.76064 · doi:10.1137/S0036141003435576
[23]Wu, J.: The quasi-geostrophic equation with critical or supercritical dissipation, Nonlinearity 18, 139-154 (2005) · Zbl 1067.35002 · doi:10.1088/0951-7715/18/1/008
[24]Wu, J.: Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation, Nonlinear anal. 67, 3013-3036 (2007) · Zbl 1122.76014 · doi:10.1016/j.na.2006.09.050