zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate. (English) Zbl 1163.76318
Summary: A new analytic approximate technique for addressing nonlinear problems, namely the Optimal Homotopy Asymptotic Method (OHAM), is proposed and used in an application to the steady flow of a fourth-grade fluid. This approach does not depend upon any small/large parameters. This method provides us with a convenient way to control the convergence of approximation series and adjust convergence regions when necessary. The series solution is developed and the recurrence relations are given explicitly. The results reveal that the proposed method is effective and easy to use.
MSC:
76A05Non-Newtonian fluids
76M25Other numerical methods (fluid mechanics)
References:
[1]Sajid, M.; Hayat, T.; Asghar, S.: On the analytic solution of the steady flow of a fourth grade fluid, Phys. lett. A 355, 18-26 (2006)
[2]Hayat, T.; Sajid, M.: On analytic solution for thin film flow of fourth grade fluid down a vertical cylinder, Phys. lett. A 361, 316-322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[3]Rajagopal, K. R.: On the boundary conditions for fluids of the differential type, J. Navier–Stokes equation and related non-linear problems, 273-278 (1995) · Zbl 0846.35107
[4]He, J. H.: Homotopy perturbation technique, Comput. methods appl. Mech. eng. 178, 257-262 (1999)
[5]He, J. H.: Homotopy perturbation method for solving boundary value problems, Phys. lett. A 350, No. 1–2, 1187-1193 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[6]Liao, S. J.: A second-order approximate analytical solution of a simple pendulum by the process analysis method, ASME, J. Appl. mech. 59, 970-975 (1992) · Zbl 0769.70017 · doi:10.1115/1.2894068
[7]Liao, S. J.; Chwang, A. T.: Application of homotopy analysis method in nonlinear oscillations, ASME J. Appl. mech. 65, 914-922 (1998)