[1] | Ahn, B.-H., 1978. Computation of Market Equilibria for Policy Analysis: The Project Independence Evaluation System Approach, Ph.D. Dissertation, Department of Engineering-Economic Systems, Stanford University. |

[2] | Bar-Gera, H.; Boyce, D.: Origin-based algorithms for combined travel forecasting models, Transportation research part B 37, 403-422 (2003) |

[3] | Bar-Gera, H.; Boyce, D.: Solving a non-convex combined travel forecasting model by the method of successive averages with constant step sizes, Transportation research part B 40, No. 5, 351-367 (2006) |

[4] | Beckmann, M. J.; Mcguire, C. B.; Winsten, C. B.: Studies in the economics of transportation, (1956) |

[5] | Ben-Akiva, M., Lerman, S.R., 1978. Disaggregate travel and mobility-choice models and measures of accessibility. In: Proceedings of the Third International Conference on Behavioural Travel Modelling, pp. 654 – 679. |

[6] | Bertsekas, D. R.: On the goldstein – levitin – Polyak gradient projection method, IEEE transactions on automatic control 21, 174-184 (1976) · Zbl 0326.49025 · doi:10.1109/TAC.1976.1101194 |

[7] | Boyce, D. E.: Is the sequential travel forecasting procedure counterproductive?, ASCE journal of urban planning and development 128, 169-183 (2002) |

[8] | Boyce, D. E.: Forecasting travel on congested urban transportation networks: review and prospects for network equilibrium models, Networks and spatial economics 7, No. 2, 99-128 (2007) · Zbl 1144.90320 · doi:10.1007/s11067-006-9009-0 |

[9] | Boyce, D.; Bar-Gera, H.: Network equilibrium models of travel choices with multiple classes, Regional science in economic analysis, 85-98 (2001) |

[10] | Boyce, D.; Bar-Gera, H.: Multiclass combined models for urban travel forecasting, Network and spatial economics 4, 115-124 (2004) · Zbl 1079.90017 · doi:10.1023/B:NETS.0000015659.39216.83 |

[11] | Boyce, D. E.; Daskin, M. S.: Urban transportation, Design and operation of civil and environmental engineering systems (1997) |

[12] | Boyce, D.; Xiong, C.: Forecasting travel for very large cities: challenges and opportunities for China, Transportmetrica 3, 1-19 (2007) |

[13] | Boyce, D.; Chon, K. S.; Lee, Y. J.; Lin, K. T.; Leblanc, L. J.: Implementation and evaluation of combined models of location, destination, mode and route choice, Environment and planning A 15, 1219-1230 (1983) |

[14] | Boyce, D. E.; Leblanc, L. J.; Chon, K. S.: Network equilibrium models of urban location and travel choices: A retrospective survey, Journal of regional science 28, 159-183 (1988) |

[15] | Chen, A.; Lo, H. K.; Yang, H.: A self-adaptive projection and contraction algorithm for the traffic assignment problem with path-specific costs, European journal of operational research 135, 27-41 (2001) · Zbl 1077.90516 · doi:10.1016/S0377-2217(00)00287-3 |

[16] | Chen, A.; Lee, D. H.; Jayakrishnan, R.: Computational study of state-of-the-art path-based traffic assignment algorithms, Mathematics and computers in simulation 59, 509-518 (2002) · Zbl 1030.90012 · doi:10.1016/S0378-4754(01)00437-2 |

[17] | Dafermos, S. C.: Relaxation algorithm for the general asymmetric traffic equilibrium problem, Transportation science 16, No. 2, 231-240 (1982) |

[18] | Daganzo, C. F.: Multinomial probit: the theory and its application to demand forecasting, (1979) · Zbl 0476.62090 |

[19] | Daganzo, C. F.: Unconstrained extremal formulation of some transportation equilibrium problems, Transportation science 16, 332-360 (1982) |

[20] | Daganzo, C. F.; Kusnic, M.: Two properties of the nested logit model, Transportation science 27, 395-400 (1993) · Zbl 0800.90217 · doi:10.1287/trsc.27.4.395 |

[21] | Daganzo, C. F.; Sheffi, Y.: On stochastic models of traffic assignment, Transportation science 11, 253-274 (1977) |

[22] | de Cea, J., Fernandez, J.E., 2001. ESTRAUS: A simultaneous equilibrium model to analyze and evaluate multimodal urban transportation systems with multiple user classes. In: Proceedings of the Ninth World Conference on Transport Research, Seoul, Korea. |

[23] | de Cea, J., Fernandez, J.E., Dekock, V. Soto, A., Friesz, T.L., 2003. ESTRAUS: A computer package for solving supply-demand equilibrium problems on multimodal urban transportation networks with multiple user classes. In: Presented at the Annual Meeting of the Transportation Research Board, Washington, DC. |

[24] | Evans, S.: Derivation and analysis of some models for combining trip distribution and assignment, Transportation research 9, 241-246 (1976) |

[25] | Facchinei, F.; Pang, J. S.: Finite-dimensional variational inequalities and complementarity problems, (2003) |

[26] | Florian, M.: A traffic equilibrium model of travel by car and public transit modes, Transportation science 11, 166-179 (1977) |

[27] | Florian, M.; Nguyen, S.: A combined trip distribution modal split and assignment model, Transportation research 12, 241-246 (1978) |

[28] | Florian, M.; Spiess, H.: The convergence of diagonalization algorithms for asymmetric network equilibrium problems, Transportation research part B 16, No. 6, 447-483 (1982) |

[29] | Florian, M.; Nguyen, S.; Ferland, J.: On the combined distribution-assignment of traffic, Transportation science 9, 43-53 (1975) |

[30] | Florian, M.; Wu, J. H.; He, S. G.: A multi-class multi-mode variable demand network equilibrium model with hierarchical logit structures, Transportation and network analysis: current trends miscellaneous in honor of michael florian (2002) |

[31] | Gabriel, S.; Bernstein, D.: The traffic equilibrium problem with nonadditive path costs, Transportation science 31, No. 4, 337-348 (1997) · Zbl 0920.90058 · doi:10.1287/trsc.31.4.337 |

[32] | García, R.; Marín, A.: Network equilibrium models with combined modes: models a and solution algorithms, Transportation research part B 39, 223-254 (2005) |

[33] | Garret, M.; Wachs, M.: Transportation planning on trial, (1996) |

[34] | Goldstein, A. A.: Convex programming in Hilbert space, Bulletin of the American mathematical society 70, 709-710 (1964) · Zbl 0142.17101 · doi:10.1090/S0002-9904-1964-11178-2 |

[35] | Han, D. R.; Sun, W.: A new modified goldstein – levitin – Polyak projection method for variational inequality problems, Computers & mathematics with applications 47, No. 12, 1817-1825 (2004) · Zbl 1057.49011 · doi:10.1016/j.camwa.2003.12.002 |

[36] | Harker, P. T.; Pang, J. S.: Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms, and applications, Mathematical programming 48, 161-220 (1988) · Zbl 0734.90098 · doi:10.1007/BF01582255 |

[37] | Hasan, M. K.; Dashti, H. M.: A multiclass simultaneous transportation equilibrium model, Networks and spatial economics 7, No. 3, 197-211 (2007) · Zbl 1170.90004 · doi:10.1007/s11067-006-9014-3 |

[38] | Heydecker, B.: Some consequences of detailed intersection modeling in road traffic assignment, Transportation science 17, No. 3, 263-281 (1983) |

[39] | Lam, W. H. K.; Huang, H. J.: A combined trip distribution and assignment model for multiple user classes, Transportation research part B 26, 275-287 (1992) |

[40] | Levitin, E. S.; Polyak, B. T.: Constrained minimization methods, USSR computational mathematics and mathematical physics 6, 1-50 (1965) |

[41] | Lo, H. K.; Chen, A.: Traffic equilibrium problem with route-specific costs: formulation and algorithms, Transportation research part B 34, 493-513 (2000) |

[42] | Mahmassani, H. S.; Mouskos, K. C.: Some numerical results on the diagonalization algorithm for network assignment with asymmetric interactions between cars and trucks, Transportation research part B 22, 275-290 (1988) |

[43] | Mcfadden, D.: Econometric models of probabilistic choice, Structural analysis of discrete data with econometric applications (1981) · Zbl 0598.62145 |

[44] | Mcnally, M. G.: The activity-based approach, Handbook of transport modelling, 53-69 (2000) |

[45] | Meneguzzer, C.: An equilibrium route choice model with explicit treatment of the effect of intersections, Transportation research part B 29, 329-356 (1995) |

[46] | Nagurney, A.: Network economics: A variational inequality approach, (1993) |

[47] | Nagurney, A.; Zhang, D.: Projected dynamical systems and variational inequality with applications, (1996) |

[48] | Oppenheim, N.: Urban travel demand modeling, (1995) |

[49] | Ortuzar, J. D.; Willumsen, L. G.: Modelling transport, (2001) |

[50] | Patriksson, M.: The traffic assignment problem: models and methods, (1994) |

[51] | Safwat, K. N. A.; Magnanti, T. L.: A combined trip generation, trip distribution, modal split, and trip assignment model, Transportation science 22, 14-30 (1988) · Zbl 0639.90032 |

[52] | Sheffi, Y.: Urban transportation networks: equilibrium analysis with mathematical programming methods, (1985) |

[53] | Sheffi, Y.; Daganzo, C. F.: Hypernetworks and supply demand equilibrium with disaggregate demand models, Transportation research record 673, 113-121 (1978) |

[54] | Sheffi, Y.; Powell, W.: An algorithm for the equilibrium assignment problem with random link times, Networks 12, No. 2, 191-207 (1982) · Zbl 0485.90082 · doi:10.1002/net.3230120209 |

[55] | Smith, M. J.: Junction interactions and monotonicity in traffic assignment, Transportation research part B 16, l-3 (1982) |

[56] | Williams, H. C. W.L.: On the formation of travel demand models and economic evaluation measures of user benefit, Environ plan A 9, 285-344 (1977) |

[57] | Wong, K. I.; Wong, S. C.; Wu, J. H.; Yang, H.; Lam, W. H. K.: D.h.leeurban and regional transportation modeling: essays in honor of david boyce, Urban and regional transportation modeling: essays in honor of david boyce 2, 25-42 (2004) |

[58] | Wu, J. H.; Florian, M.; He, S.: An algorithm for multiclass network equilibrium problem in PCE of trucks: application to the SCAG travel demand model, Transportmetrica 2, 1-19 (2006) |

[59] | Zhou, Z.; Chen, A.: A self-adaptive scaling technique embedded in the projection traffic assignment algorithm, Journal of eastern Asia society for transportation studies 5, 1647-1662 (2003) |

[60] | Zhou, Z., Chen, A., 2006. A self-adaptive gradient projection algorithm for solving the nonadditive traffic equilibrium problem. In: Proceedings of the 85th annual meeting of the Transportation Research Board, Washington, DC, USA. |