zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A simple model of corporate international investment under incomplete information and taxes. (English) Zbl 1163.91379
Summary: This paper extends the theory of corporate international investment of Choi in an environment where the segmentation of international capital markets for investors or the presence of agency costs provide some independence to corporate decisions. The model shows that the real exchange risk, the competition between firms in different markets and diversification gains affect corporate international investment. By accounting for the role of information as defined in the models of Merton, Bellalah and Wu, the model embodies different existing explanations based on economic and behavioral variables. We show in a “two-country” firm model that real exchange risk, diversification motives and information costs are important elements in the determination of corporate international investment decisions. The dynamic portfolio model reflects the main results in several theories of foreign direct investment. Our model accounts for the role of information in explaining foreign investments. It provides simple explanations which are useful in explaining the home bias puzzle in international finance. Using the dynamical programming principle method, we provide the general solution for the proportion of firm’s total capital budget. We also use a new method to get explicit solutions in some special cases. This new method can be applied to solve other financial control problems. The simulating results are given to show our conclusion and the influence of some parameters to the optimal solution. The economic results can be seen as a generalization of the model of Solnik.
MSC:
91B28Finance etc. (MSC2000)
91B64Macro-economic models (monetary models, models of taxation)
References:
[1]Adler, M., & Dumas, B. (1983). International portfolio choice and corporation finance: a synthesis. Journal of Finance, 38, 925–984. · doi:10.2307/2328091
[2]Adler, M., & Dumas, B. (1984). Exposure to currency risk: definition and measurement. Financial Management, 13, 41–50. · doi:10.2307/3665446
[3]Aliber, R. (1970). A theory of foreign direct investment. C. P. Kindleberger (Ed.), The international corporation. Cambridge: MIT Press.
[4]Aliber, R. (1983). Money, multinationals and sovereigns. C. P. Kindleberger & D. Audretsch (Eds.), The multinational corporation in the 1980s. Cambridge: MIT Press.
[5]Bellalah, M. (1990). Quatres essais sur l’évaluation des options: dividendes, volatilités des taux d’intérêt et information incomplète. Doctorat de l’Université de Paris-Dauphine (June).
[6]Bellalah, M. (1999). The valuation of futures and commodity options with information costs. Journal of Futures Markets, 19, 645–664. · doi:10.1002/(SICI)1096-9934(199909)19:6<645::AID-FUT2>3.0.CO;2-S
[7]Bellalah, M. (2001a). A re-examination of corporate risks under incomplete information. International Journal of Finance and Economics, 6, 59–67. · doi:10.1002/ijfe.139
[8]Bellalah, M. (2001b). Market imperfections, information costs and the valuation of derivatives: some general results. International Journal of Finance, 13, 1895–1928.
[9]Bellalah, M., & Jacquillat, B. (1995). Option valuation with information costs: theory and tests. Financial Review, August, 617–635.
[10]Bellalah, M., & Wu, Z. (2002). A model for market closure and international portfolio management within incomplete information. International Journal of Theoretical and Applied Finance, 5(5), 479–495. · Zbl 1107.91323 · doi:10.1142/S0219024902001559
[11]Black, F. (1974). International capital market equilibrium with investment barriers. Journal of Financial Economics, 1, 337–352. · doi:10.1016/0304-405X(74)90013-0
[12]Choi, J. J. (1989). Diversification, exchange risks and corporate international investment. Journal of International Business Studies, 20, 145–155. · doi:10.1057/palgrave.jibs.8490356
[13]Coval, J., & Moskowitz, T. F. (1999). Home bias at home: local equity preference in domestic portfolios. Working paper, University of Michigan.
[14]Dornbusch, R. (1980). Exchange rate risk and the macroeconomics of exchange rate determination. NBER Working paper, No. 493, June.
[15]Kang, J., & Stulz, R. (1997). Why is there a home bias? An analysis of foreign portfolio equity in Japan. Journal of Financial Economics, 46, 3–28. · doi:10.1016/S0304-405X(97)00023-8
[16]Karatzas, I. (1987). Optimization problem in the theory of continuous trading. SIAM Journal of Control and Optimization, 27, 1221–1259. · Zbl 0701.90008 · doi:10.1137/0327063
[17]Karatzas, I., & Shreve, S. E. (1988). Brownian motion and stochastic calculus. New York: Springer.
[18]Merton, R. (1987). An equilibrium market model with incomplete information. Journal of Finance, 42, 483–510. · doi:10.2307/2328367
[19]Sharp, W. F. (1964). Capital assets prices: a theory of market equilibrium under conditions of risk. Journal of Finance, 19, 425–442. · doi:10.2307/2977928
[20]Solnik, B. (1974). An equilibrium model of the international capital market. Journal of Economic Theory, 8, 500–524. · doi:10.1016/0022-0531(74)90024-6
[21]Stulz, R. (1981). On the effects of barriers to international investment. Journal of Finance, 36, 923–934. · doi:10.2307/2327556
[22]Stulz, R. (1999). Globalization of equity markets and the cost of capital. Working paper, February.
[23]Wu, Z., & Xu, W. (1996). A direct method in optimal portfolio and consumption choice. Applied Mathematics. A Journal of Chinese Universities, Series B, 11, 349–354. · Zbl 0858.90013 · doi:10.1007/BF02664802
[24]Yong, J., & Zhou, X. (1999). Stochastic controls: Hamiltonian systems and HJB equations. New York: Springer.