zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem. (English) Zbl 1163.92040

Summary: Biological control has been attracting an increasing attention over the last two decades as an environmentally friendly alternative to the more traditional chemical-based control. We address robustness of the biological control strategy with respect to fluctuations in the controlling species density. Specifically, we consider a pest being kept under control by its predator. The predator response is assumed to be of Holling type III, which makes the system’s kinetics “excitable.” The system is studied by means of mathematical modeling and extensive numerical simulations.

We show that the system response to perturbations in the predator density can be completely different in spatial and non-spatial systems. In the nonspatial system, an overcritical perturbation of the population density results in a pest outbreak that will eventually decay with time, which can be regarded as a success of the biological control strategy. However, in the spatial system, a similar perturbation can drive the system into a self-sustained regime of spatiotemporal pattern formation with a high pest density, which is clearly a biological control failure. We then identify the parameter range where the biological control can still be successful and describe the corresponding regime of the system dynamics. Finally, we identify the main scenarios of the system response to the population density perturbations and reveal the corresponding structure of the parameter space of the system.

35Q80Appl. of PDE in areas other than physics (MSC2000)
93C95Applications of control theory
65C20Models (numerical methods)
[1]Alonso, D., Bartumeus, F., Catalan, J., 2002. Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83, 28–4. · doi:10.1890/0012-9658(2002)083[0028:MIBPCG]2.0.CO;2
[2]Belsky, A.J., 1986. Population and community processes in a mosaic grassland in the Serengeti, Tanzania. J. Ecol. 74, 841–56. · doi:10.2307/2260402
[3]Briggs, C.J., Hoopes, M.F., 2004. Stabilizing effects in spatial parasitoid-host and predator-prey models: a review. Theor. Popul. Biol. 65, 299–15. · Zbl 1109.92047 · doi:10.1016/j.tpb.2003.11.001
[4]Brodmann, P.A., Wilcox, C.V., Harrison, S., 1997. Mobile parasitoids may restrict the spatial spread of an insect outbreak. J. Anim. Ecol. 66, 65–2. · doi:10.2307/5965
[5]Cosper, E.M., Bricelj, V.M., Carpenter, E.J., 1989. Novel Phytoplankton Blooms. Coastal and Estuarine Studies, vol. 35. Springer, Berlin.
[6]Couteron, P., Lejeune, O., 2001. Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model. J. Ecol. 89, 616–28. · doi:10.1046/j.0022-0477.2001.00588.x
[7]Crawley, M.J., 1997. Plant-herbivore dynamics. In: Crawley, M.J. (Ed.), Plant Ecology, pp. 463–65. Blackwell, Oxford.
[8]Edwards, A.M., Brindley, J., 1999. Zooplankton mortality and the dynamical behavior of plankton population models. Bull. Math. Biol. 61, 202–39.
[9]Ermentrout, B., Chen, X., Chen, Z., 1997. Transition fronts and localized structures in bistable reaction-diffusion equations. Physica D 108, 147–67. · Zbl 0935.35069 · doi:10.1016/S0167-2789(97)82011-8
[10]Fagan, W.F., Lewis, M.A., Neubert, M.G., van den Driessche, P., 2002. Invasion theory and biological control. Ecol. Lett. 5, 148–57. · doi:10.1046/j.1461-0248.2002.0_285.x
[11]Ferran, A., Guige, L., Tourniaire, R., Gambier, J., Fournier, D., 1998. An artificial non-flying mutation to improve the efficiency of the ladybird Harmonia axyridis in the biological control of aphids. Biocontrol 43, 53–4. · doi:10.1023/A:1009970004842
[12]Fife, P.C., 1976. Pattern formation in reacting and diffusing systems. J. Chem. Phys. 64, 554–64. · doi:10.1063/1.432246
[13]Franks, P., 2001. Phytoplankton blooms in a fluctuating environment: the roles of plankton response time scales and grazing. J. Plankt. Res. 23, 1433–441. · doi:10.1093/plankt/23.12.1433
[14]Gurney, W.S.C., Veitch, A.R., Cruickshank, I., McGeachin, G., 1998. Circles and spirals: population persistence in a spatially explicit predator-prey model. Ecology 79, 2516–530.
[15]Harrison, S., 1997. Persistent localized outbreaks in the western tussock moth (Orgyia vetusta): the roles of resource quality, predation and poor dispersal. Ecol. Entomol. 22, 158–66. · doi:10.1046/j.1365-2311.1997.00053.x
[16]Hajek, A., 2004. Natural Enemies: An Introduction to Biological Control. Cambridge University Press, Cambridge.
[17]Hastings, A., Harisson, S., McCann, K., 1997. Unexpected spatial patterns in an insect outbreak match a predator diffusion model. Proc. R. Soc. Lond. B 264, 1837–840. · doi:10.1098/rspb.1997.0253
[18]Hosseini, P.R., 2006. Pattern formation and individual-based models: the importance of understanding individual-based movement. Ecol. Model. 194, 357–71. · doi:10.1016/j.ecolmodel.2005.10.041
[19]Hunter, A.F., Dwyer, G., 1998. Outbreaks and interacting factors: insect population explosions synthesized and dissected. Integr. Biol. 1, 166–77. · doi:10.1002/(SICI)1520-6602(1998)1:5<166::AID-INBI2>3.0.CO;2-K
[20]Krischer, K., Mikhailov, A., 1994. Bifurcation to travelling spots in reaction-diffusion systems. Phys. Rev. Lett. 73, 3165–168. · doi:10.1103/PhysRevLett.73.3165
[21]Lindner, B., García-Ojalvo, J., Neiman, A., Schimansky-Geier, L., 2004. Effects of noise in excitable systems. Phys. Rep. 392, 321–24. · doi:10.1016/j.physrep.2003.10.015
[22]Lotka, A.J., 1925. Elements of Physical Biology. Williams and Wilkins, Baltimore.
[23]Ludwig, D., Jones, D.D., Holling, C.S., 1978. Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47, 315–32. · doi:10.2307/3939
[24]Malchow, H., Petrovskii, S.V., Venturino, E., 2008. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulations. Chapman & Hall/CRC Press, London.
[25]May, R.M., 1974. Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.
[26]McEvoy, P., Cox, C., Coombs, E., 1991. Successful biological control of Ragwort, Senecio Jacobaea, by introduced insects in Oregon. Ecol. Appl. 1, 430–42. · doi:10.2307/1941900
[27]Mendel, Z., Assael, F., Zeidan, S., Zehavi, A., 1998. Classical biological control of Palaeococcus fuscipennis (Burmeister) (Homoptera: Margarodidae) in Israel. Biol. Control 12, 151–57. · doi:10.1006/bcon.1998.0621
[28]Mimura, M., Tabata, M., Hosono, Y., 1980. Multiple solutions of two-point boundary value problem of Neumann type with a small parameter. SIAM J. Math. Anal. 11, 613–31. · Zbl 0438.34014 · doi:10.1137/0511057
[29]Morozov, A.Y., Petrovskii, S.V., Li, B.-L., 2006. Spatiotemporal complexity of the patchy invasion in a predator-prey system with the Allee effect. J. Theor. Biol. 238, 18–5. · doi:10.1016/j.jtbi.2005.05.021
[30]Morozov, A.Y., Ruan, S., Li, B.L., 2008. Patterns of patchy spread in multi-species reaction–diffusion models. Ecol. Complex. 5, 313–28. · doi:10.1016/j.ecocom.2008.05.002
[31]Muratov, C.B., 1996. Self-replication and splitting of domain patterns in reaction–diffusion systems with the fast inhibitor. Phys. Rev. E 54, 3369–376. · doi:10.1103/PhysRevE.54.3369
[32]Muratov, C.B., Osipov, V.V., 1996a. General theory of instabilities for patterns with sharp interfaces in reaction–diffusion systems. Phys. Rev. E 53, 3101–116. · doi:10.1103/PhysRevE.53.3101
[33]Muratov, C.B., Osipov, V.V., 1996b. Scenarios of domain pattern formation in a reaction–diffusion system. Phys. Rev. E 54, 4860–879. · doi:10.1103/PhysRevE.54.4860
[34]Murray, J.D., 1989. Mathematical Biology. Springer, Berlin.
[35]Nisbet, R.M., Gurney, W.S.C., 1982. Modelling Fluctuating Populations. Wiley, Chichester.
[36]Pascual, M., 1993. Diffusion-induced chaos in a spatial predator-prey system. Proc. R. Soc. Lond. B 251, 1–. · doi:10.1098/rspb.1993.0001
[37]Pascual, M., Caswell, H., 1997. Environmental heterogeneity and biological pattern in a chaotic predator-prey system. J. Theor. Biol. 185, 1–3. · doi:10.1006/jtbi.1996.0272
[38]Pearson, J.E., 1993. Complex patterns in a simple system. Science 261, 189–92. · doi:10.1126/science.261.5118.189
[39]Petrovskii, S.V., Li, B.-L., 2001. Increased coupling between sub-populations in a spatially structured environment can lead to population outbreaks. J. Theor. Biol. 212, 549–62. · doi:10.1006/jtbi.2001.2393
[40]Petrovskii, S.V., Li, B.-L., 2006. Exactly Solvable Models of Biological Invasion. Chapman & Hall/CRC Press, London.
[41]Petrovskii, S.V., Malchow, H., 1999. A minimal model of pattern formation in a prey-predator system. Math. Comput. Model. 29, 49–3. · Zbl 0990.92040 · doi:10.1016/S0895-7177(99)00070-9
[42]Petrovskii, S.V., Malchow, H., 2001. Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol. 59, 157–74. · Zbl 1035.92046 · doi:10.1006/tpbi.2000.1509
[43]Petrovskii, S.V., Morozov, A.Y., Venturino, E., 2002. Allee effect makes possible patchy invasion in a predator-prey system. Ecol. Lett. 5, 345–52. · doi:10.1046/j.1461-0248.2002.00324.x
[44]Petrovskii, S.V., Malchow, H., Hilker, F., Venturino, E., 2005. Patterns of patchy spread in deterministic and stochastic models of biological invasion and biological control. Biol. Invasions 7, 771–93. · doi:10.1007/s10530-005-5217-7
[45]Room, P.M., Harley, K.L.S., Forno, I.W., Sands, D.P.A., 1981. Successful biological control of the floating weed salvinia. Nature 294, 78–0. · doi:10.1038/294078a0
[46]Sapoukhina, N., Tyutyunov, Y., Arditi, R., 2003. The role of prey-taxis in biological control: a spatial theoretical model. Am. Nat. 162, 61–6. · doi:10.1086/375297
[47]Scheffer, M., 1991. Fish and nutrients interplay determines algal biomass: a minimal model. Oikos 62, 271–82. · doi:10.2307/3545491
[48]Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.
[49]Segel, L.A., Jackson, J.L., 1972. Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–59. · doi:10.1016/0022-5193(72)90090-2
[50]Sherratt, J.A., Lewis, M.A., Fowler, A.C., 1995. Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA 92, 2524–528. · Zbl 0819.92024 · doi:10.1073/pnas.92.7.2524
[51]Sherratt, J.A., Smith, M.J., 2008. Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models. Interface 5, 483–05.
[52]Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford University Press, Oxford.
[53]Smayda, T.J., Shimuza, Y. (Eds.), 1993. Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam.
[54]Thomas, J., 1995. Numerical Partial Differential Equations: Finite Difference Methods. Texts in Applied Mathematics, vol. 22. Springer, New York.
[55]Truscott, J.E., Brindley, J., 1994a. Ocean plankton populations as excitable media. Bull. Math. Biol. 56, 981–98.
[56]Truscott, J.E., Brindley, J., 1994b. Equilibria, stability and excitability in a general class of plankton population models. Philos. Trans. R. Soc. Lond. A 347, 703–18. · Zbl 0857.92017 · doi:10.1098/rsta.1994.0076
[57]Volterra, V., 1926. Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–60. · Zbl 02586922 · doi:10.1038/118558a0
[58]White, L.P., 1970. Brousse tigrée patterns in Southern Niger. J. Ecol. 58, 549–53. · doi:10.2307/2258290