zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Soft semirings. (English) Zbl 1165.16307
Summary: Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft semirings by using the soft set theory. The notions of soft semirings, soft subsemirings, soft ideals, idealistic soft semirings and soft semiring homomorphisms are introduced, and several related properties are investigated.
03E72Fuzzy set theory
[1]Zadeh, L. A.: Fuzzy sets, Inform. control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2]Zadeh, L. A.: Toward a generalized theory of uncertainty (GTU)–an outline, Inform. sci. 172, 1-40 (2005) · Zbl 1074.94021 · doi:10.1016/j.ins.2005.01.017
[3]Pawlak, Z.: Rough sets, Int. J. Inform. comput. Sci. 11, 341-356 (1982)
[4]Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Inform. sci. 177, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[5]Gau, W. L.; Buehrer, D. J.: Vague sets, IEEE trans. Syst. man cybern. 23, No. 2, 610-614 (1993)
[6]Gorzalzany, M. B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy sets and systems 21, 1-17 (1987) · Zbl 0635.68103 · doi:10.1016/0165-0114(87)90148-5
[7]Molodtsov, D.: Soft set theory–first results, Comput. math. Appl. 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[8]Maji, P. K.; Roy, A. R.; Biswas, R.: An application of soft sets in a decision making problem, Comput. math. Appl. 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[9]Chen, D.; Tsang, E. C. C.; Yeung, D. S.; Wang, X.: The parametrization reduction of soft sets and its applications, Comput. math. Appl. 49, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[10]Maji, P. K.; Biswas, R.; Roy, A. R.: Soft set theory, Comput. math. Appl. 45, 555-562 (2003)
[11]Aktaş, H.; Çağman, N.: Soft sets and soft groups, Inform. sci. 177, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[12]Jun, Y. B.: Soft BCK/BCI-algebras, Comput. math. Appl. 56, 1408-1413 (2008)
[13]Jun, Y. B.; Park, C. H.: Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. sci. 178, 2466-2475 (2008) · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[14]Glazek, K.: A guide to the literature on semirings and their applications in mathematics and information sciences, (2002)
[15]Golan, J. S.: Semirings and affine equations over them: theory and applications, (2003)
[16]Henriksen, M.: Ideals in semirings with commutative addition, Amer. math. Soc. notices 6, 321 (1958)
[17]Iizuka, K.: On the Jacobson radical of a semiring, Tohoku math. J. 11, No. 2, 409-421 (1959) · Zbl 0122.25504 · doi:10.2748/tmj/1178244538
[18]Ahsan, J.; Saifullah, K.; Khan, M. Farid: Fuzzy semirings, Fuzzy sets and systems 60, 309-320 (1993) · Zbl 0796.16038 · doi:10.1016/0165-0114(93)90441-J
[19]Baik, S. I.; Kim, H. S.: On fuzzy k-ideals in semirings, Kangweon-kyungki math. J. 8, 147-154 (2000)
[20]Dutta, T. K.; Biswas, B. K.: Fuzzy prime ideals of a semiring, Bull. malays. Math. soc. 17, 9-16 (1994) · Zbl 0848.16038
[21]Dutta, T. K.; Biswas, B. K.: Fuzzy k-ideals of semirings, Bull. Calcutta math. Soc. 87, 91-96 (1995) · Zbl 0834.16048
[22]Dutta, T. K.; Biswas, B. K.: Fuzzy congruence and quotient semiring of a semiring, J. fuzzy math. 4, 737-748 (1996) · Zbl 0871.16023
[23]Ghosh, S.: Fuzzy k-ideals of semirings, Fuzzy sets and systems 95, 103-108 (1998) · Zbl 0924.16036 · doi:10.1016/S0165-0114(96)00306-5
[24]Jun, Y. B.; Öztürk, M. A.; Song, S. Z.: On fuzzy h-ideals in hemirings, Inform. sci. 162, 211-226 (2004) · Zbl 1064.16051 · doi:10.1016/j.ins.2003.09.007
[25]Jun, Y. B.; Neggers, J.; Kim, H. S.: Normal L-fuzzy ideals in semirings, Fuzzy sets and systems 82, 383-386 (1996) · Zbl 0878.16023 · doi:10.1016/0165-0114(95)00275-8
[26]Jun, Y. B.; Neggers, J.; Kim, H. S.: On L-fuzzy ideals in semirings I, Czechoslovak math. J. 48, No. 123, 669-675 (1998) · Zbl 0954.16032 · doi:10.1023/A:1022479320940
[27]Kim, C. B.: Isomorphism theorems and fuzzy k-ideals of k-semirings, Fuzzy sets and systems 112, 333-342 (2000) · Zbl 0948.16037 · doi:10.1016/S0165-0114(98)00018-9
[28]Neggers, J.; Jun, Y. B.; Kim, H. S.: Extensions of L-fuzzy ideals in semirings, Kyungpook math. J. 38, 131-135 (1998) · Zbl 0916.16025
[29]Neggers, J.; Jun, Y. B.; Kim, H. S.: On L-fuzzy ideals in semirings II, Czechoslovak math. J. 49, No. 124, 127-133 (1999) · Zbl 0954.16033 · doi:10.1023/A:1022416410366