zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class of ninth degree system with four isochronous centers. (English) Zbl 1165.34338
Summary: We study a class of ninth degree system and obtain the conditions that its four singular points can be general centers and isochronous centers (or linearizable centers) at the same time by computing carefully and strict proof. What is worth mentioning is that the expressions of Liapunov constants and periodic constants are simpler, and recursive formulas of node point values are given for the first time, which is a new effective criterion for verifying isochronous centers.
MSC:
34C07Theory of limit cycles of polynomial and analytic vector fields
34C05Location of integral curves, singular points, limit cycles (ODE)
References:
[1]Lin, Yiping; Li, Jibin: Normal form and critical points values of the period of closed orbits for planar autonomous systems, Acta. math. Sinica. 34, 490-501 (1991)
[2]Chavarriga, J.; Gine, J.; Garcia, I.: Isochronous centers of s linear center perturbed by fourth degree homogeneous polynomial, Bull. sci. Math. 123, 77-96 (1999) · Zbl 0921.34032 · doi:10.1016/S0007-4497(99)80015-3
[3]Chavarriga, J.; Gine, J.; Garcia, I.: Isochronous centers of s linear center perturbed by fifth degree homogeneous polynomial, Bull. sci. Math. 126, 351-368 (2000) · Zbl 0978.34028 · doi:10.1016/S0377-0427(99)00364-7
[4]Cairó, L.; Giné, J.; Llibre, J.: A class of reversible cubic systems with an isochronous center, Comput. math. Appl. 38, 39-53 (1999) · Zbl 0982.34024 · doi:10.1016/S0898-1221(99)00283-7
[5]Gasull, A.; Manosa, V.: An explicit expression of the first Liapunov and period constants with applications, J. math. Anal. appl. 211, 190-212 (1997) · Zbl 0882.34040 · doi:10.1006/jmaa.1997.5455
[6]Loud, W. S.: Behavior of the period of solutions of certain plane autonomous systems near centers, Contrib. differential equations 3, 21-36 (1964) · Zbl 0139.04301
[7]Pleshkan, I.: A new method of investigating the isochronicity of system of two differential equations, Differential equations 5, 796-802 (1969) · Zbl 0252.34034
[8]Chavarriga, J.; Gine, J.; Garcia, I.: Isochronicity into a family of time-reversible cubic vector fields, Appl. math. Comput. 121, 129-145 (2001) · Zbl 1025.37011 · doi:10.1016/S0096-3003(99)00267-2
[9]Chavarriga, J.; Gine, J.; Garcia, I.: Isochronous centers of cubic systems with degenerate infinity, Differential equations dynam. Systems 7, No. 2, 221-238 (1999) · Zbl 0982.34025
[10]Lloyd, N. G.; Christopher, J.; Devlin, J.; Pearson, J. M.; Uasmin, N.: Quadratic like cubic systems, Differential equations dynam. Systems 5, No. 3–4, 329-345 (1997) · Zbl 0898.34026
[11]Liu, Y.: Theory of center-focus for a class of higher-degree critical points and infinite points, Sci. China (Ser. A) 44, 37-48 (2001) · Zbl 1012.34027 · doi:10.1007/BF02878718
[12]Liu, Y.; Li, J.: Theory of values of singular point in complex autonomous differential system, Sci. China (Ser. A) 33, 10-24 (1990) · Zbl 0686.34027
[13]Amelikin, B. B.; Lukashivich, H. A.; Sadovski, A. P.: Nonlinear oscillations in second order systems, minsk, (1982) · Zbl 0526.70024
[14]Liu, Y.; Li, J.: Periodic constants and time-angle difference of isochronous centers for complex analytic system, Int. J. Bifurcation chaos 12, No. 16, 3747-3757 (2006) · Zbl 1140.34301 · doi:10.1142/S0218127406017142
[15]Qin, Yuanxun; Liu, Zunquan: Mechanical deduction of formulas of differential equations, Chinese sci. Bull. 7, 288-397 (1980)