zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Four positive periodic solutions of a discrete time delayed predator-prey system with nonmonotonic functional response and harvesting. (English) Zbl 1165.34400
Summary: By employing the continuation theorem of coincidence degree theory, we establish an easily verifiable criteria for the existence of at least four positive periodic solutions for a discrete time delayed predator-prey system with nonmonotonic functional response and harvesting.
MSC:
34K13Periodic solutions of functional differential equations
92D25Population dynamics (general)
References:
[1]Berryman, A. A.: The origins and evolution of predator–prey theory, Ecology 75, 1530-1535 (1992)
[2]Fan, Y. H.; Li, W. T.; Wang, L. L.: Periodic solutions of delayed ratio-dependent predator–prey models with monotonic or nonmonotonic functional responses, Nonlinear analysis: RWA 5, 247-263 (2004) · Zbl 1069.34098 · doi:10.1016/S1468-1218(03)00036-1
[3]Fan, M.; Wang, K.: Periodic solutions of a discrete time nonautonomous ratio-dependent predator–prey system, Mathematical and computer modelling 35, 951-961 (2002) · Zbl 1050.39022 · doi:10.1016/S0895-7177(02)00062-6
[4]Li, Y.: Periodic solutions of a periodic delay predator–prey system, Proceedings of the American mathematical society 127, 1331-1335 (1999)
[5]Zhang, Z. Q.; Wang, Z. C.: The existence of a periodic solution for a generalized predator–prey system with delay, Mathematical Proceedings of the Cambridge philosophical society 137, 475-486 (2004) · Zbl 1064.34054 · doi:10.1017/S0305004103007527
[6]Chen, Y.: Multiple periodic solutions of delayed predator–prey system with type IV functional responses, Nonlinear analysis: RWA 5, 45-53 (2004) · Zbl 1066.92050 · doi:10.1016/S1468-1218(03)00014-2
[7]Zhang, Z. Q.: Multiple periodic solutions of a generalized predator–prey system with delays, Mathematical Proceedings of the Cambridge philosophical society 141, 175-188 (2006) · Zbl 1105.34045 · doi:10.1017/S0305004106009212
[8]Xia, Y. H.; Cao, J. D.: Global attractivity of a periodic ecological model with m-predators and n-preys by pure-delay type system, Computers and mathematics with applications 52, No. 6-7, 829-852 (2006) · Zbl 1135.34038 · doi:10.1016/j.camwa.2006.06.002
[9]Xia, Y. H.; Cao, J. D.; Cheng, S. S.: Multiple periodic solutions of a delayed stage-structured predator–prey model with non-monotone functional responses, Applied mathematical modelling 31, No. 9, 1947-1959 (2007) · Zbl 1167.34342 · doi:10.1016/j.apm.2006.08.012
[10]Xia, Y. H.; Cao, J. D.: Almost periodicity in an ecological model with M-predators and N-preys by pure-delay type system, Nonlinear dynamics 39, No. 3, 275-304 (2005) · Zbl 1093.92061 · doi:10.1007/s11071-005-4006-2
[11]Xia, Y. H.; Cao, J. D.; Lin, M. R.: Discrete-time analogues of predator–prey models with monotonic or nonmonotonic functional responses, Nonlinear analysis: RWA 8, No. 4, 1079-1095 (2007) · Zbl 1127.39038 · doi:10.1016/j.nonrwa.2006.06.007
[12]Zhang, N.: Periodic solutions of a discrete time stage-structure model, Nonlinear analysis: RWA 8, 27-39 (2007) · Zbl 1113.39015 · doi:10.1016/j.nonrwa.2005.05.005
[13]Gaines, R. E.; Mawhin, J. L.: Coincidence degree and nonlinear differential equations, (1977)
[14]Zhang, R. Y.: Periodic solutions of a single species discrete population model with periodic harvest/stock, Computers and mathematics with applications 39, 77-90 (2000) · Zbl 0970.92019 · doi:10.1016/S0898-1221(99)00315-6