zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hopf bifurcation analysis of a reaction-diffusion Sel’kov system. (English) Zbl 1165.35027
The Sel’kov model has been used for the study of morphogenesis, population dynamics and autocatalytic oxidation reactions. The authors investigate a reaction-diffusion system known as the Sel’kov model subject to the homogeneous Neumann boundary condition, where detailed Hopf bifurcation analysis is performed. They not only show the existence of the spatially homogeneous/non-homogeneous periodic solutions of the system, but also derive conditions for determining the bifurcation direction and the stability of the bifurcating periodic solution.
MSC:
35K57Reaction-diffusion equations
34K18Bifurcation theory of functional differential equations
References:
[1]Turing, A.: The chemical basis of morphogenesis, Philos. trans. R. soc. Lond. ser. B 237, 37-72 (1952)
[2]De Kepper, P.; Castets, V.; Dulos, E.; Boissonade, J.: Turing-type chemical patterns in the chlorite – iodide – malonic acid reaction, Phys. D 49, 161-169 (1991)
[3]Epstein, I. R.; Pojman, J. A.: An introduction to nonlinear chemical dynamics, (1998)
[4]Lengyel, I.; Epstein, I. R.: A chemical approach to designing Turing patterns in reaction – diffusion system, Proc. natl. Acad. sci. USA 89, 3977-3979 (1992) · Zbl 0745.92002 · doi:10.1073/pnas.89.9.3977
[5]Lengyel, I.; Epstein, I. R.: Modeling of Turing structure in the chlorite – iodide – malonic acid – starch reaction system, Science 251, 650-652 (1991)
[6]Ni, W.; Tang, M.: Turing patterns in the lengyel – Epstein system for the CIMA reaction, Trans. amer. Math. soc. 357, 3953-3969 (2005) · Zbl 1074.35051 · doi:10.1090/S0002-9947-05-04010-9
[7]Jang, J.; Ni, W.; Tang, M.: Global bifurcation and structure of Turing patterns in the 1-D lengyel – Epstein model, J. dynam. Differential equations 16, No. 2, 297-320 (2005) · Zbl 1072.35091 · doi:10.1007/s10884-004-2782-x
[8]Wang, M.: Non-constant positive steady states of the sel’kov model, J. differential equations 190, 600-620 (2003) · Zbl 1163.35362 · doi:10.1016/S0022-0396(02)00100-6
[9]Peng, R.; Wang, M.; Yang, M.: Positive steady-state solutions of the sel’kov model, Math. comput. Modelling 44, 945-951 (2006) · Zbl 1143.35337 · doi:10.1016/j.mcm.2006.03.001
[10]Peng, R.: Qualitative analysis of steady states to the sel’kov model, J. differential equations 241, 386-398 (2007) · Zbl 1210.35079 · doi:10.1016/j.jde.2007.06.005
[11]Chen, B.; Wang, M.: Qualitative analysis for a diffusive predator – prey model, Comput. math. Appl. 55, 339-355 (2008) · Zbl 1155.35390 · doi:10.1016/j.camwa.2007.03.020
[12]Wang, M. X.: Stability and Hopf bifurcation for a prey – predator model with prey – stage structure and diffusion, Math. biosci. 212, No. 2, 149-160 (2008) · Zbl 1138.92034 · doi:10.1016/j.mbs.2007.08.008
[13]Du, Y. H.; Pang, P. Y. H.; Wang, M. X.: Qualitative analysis of a prey – predator model with stage structure for the predator, SIAM J. Appl. math. 69, No. 2, 596-620 (2008) · Zbl 1173.35710 · doi:10.1137/070684173
[14]Yi, F.; Wei, J.; Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator – prey system, J. differential equations 246, 1944-1977 (2009) · Zbl 1203.35030 · doi:10.1016/j.jde.2008.10.024
[15]Yi, F.; Wei, J.; Shi, J.: Diffusion-driven instability and bifurcation in the lengyel – Epstein system, Nonlinear anal. Real world appl. 9, 1038-1051 (2008) · Zbl 1146.35384 · doi:10.1016/j.nonrwa.2007.02.005