zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solutions of the Cahn-Hilliard equation. (English) Zbl 1165.35451
Summary: We find some exact solutions of the Cahn-Hilliard equation and the system of the equations by considering a modified extended tanh function method. A numerical solution to a Cahn-Hilliard equation is obtained using a homotopy perturbation method (HPM) combined with the Adomian decomposition method (ADM). The comparisons are given in the tables.
MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
65M99Numerical methods for IVP of PDE
References:
[1]Debtnath, L.: Nonlinear partial differential equations for scientists and engineers, (1997) · Zbl 0892.35001
[2]Wazwaz, A. M.: Partial differential equations: methods and applications, (2002)
[3]El-Wakil, S. A.; Abdou, M. A.: New exact travelling wave solutions using modified extended tanh-function method, Chaos solitons fractals 31, 840 (2007) · Zbl 1139.35388 · doi:10.1016/j.chaos.2005.10.032
[4]Hassan, M. M.; Khater, A. H.: Explicit solutions of higher-order nonlinear of Schrödinger type, Physica A 387, 2433 (2008)
[5]Wazwaz, A. M.: A study of nonlinear dispersive equations with solitary-wave solutions having compact support, Math. comput. Simulation 56, 269 (2001) · Zbl 0999.65109 · doi:10.1016/S0378-4754(01)00291-9
[6]Khater, A. H.; Callebaut, D. K.; Seadawy, A. R.: General soliton solutions of an n-dimensional complex ginzberg–Landau equation, Phys. scr. 62, 353 (2000)
[7]Lei, Y.; Fajiang, Z.; Yinghai, W.: The homogeneous balance method, Lax pair, Hirota transformation and a general fifth-order KdV equation, Chaos solitons fractals 13, 337 (2002)
[8]Khater, A. H.; Hassan, M. M.; Temsah, R. S.: Exact solutions with Jacobi elliptic functions of two nonlinear models for ion acoustic plasma wave, J. phys. Soc. Japan 74, 1431 (2005) · Zbl 1076.35099 · doi:10.1143/JPSJ.74.1431
[9]Ugurlu, Y.; Kaya, D.: Analytic method for solitary solutions of some partial differential equations, Phys. lett. A 370, 251 (2007) · Zbl 1209.81110 · doi:10.1016/j.physleta.2007.05.057
[10]Khater, A. H.; Hassan, M. M.; Temsah, R. S.: Cnoidal wave solutions for a class of fifth-order KdV equations, Math. comput. Simulation 70, 221 (2005) · Zbl 1125.35403 · doi:10.1016/j.matcom.2005.08.001
[11]Inan, I. E.; Kaya, D.: Exact solutions of some nonlinear partial differential equations, Physica A 381, 104 (2007)
[12]Parkes, E. J.; Duffy, B. R.: The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations, Phys. lett. A 295, 280 (2002) · Zbl 1052.35143 · doi:10.1016/S0375-9601(02)00180-9
[13]Khater, A. H.; Malfiet, W.; Kamel, E. S.: Travelling wave solutions of some classes of nonlinear evolution equations in (1+1) and higher dimensions, Math. comput. Simulation 64, 247 (2004) · Zbl 1039.65071 · doi:10.1016/j.matcom.2003.09.024
[14]Parkes, E. J.; Duffy, B. R.: Travelling solitary wave solutions to a compound KdV-Burgers equation, Phys. lett. A 229, 217 (1997) · Zbl 1043.35521 · doi:10.1016/S0375-9601(97)00193-X
[15]Hereman, W.: Exact solitary wave solutions of coupled nonlinear evolution equations using MACSYMA, Comput. phys. Comm. 65, 143 (1991) · Zbl 0900.65349 · doi:10.1016/0010-4655(91)90166-I
[16]Fan, E. G.: Extended tanh-function method and its applications to nonlinear equations, Phys. lett. A 277, 212 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[17]Chan, J. W.: On spinodal decomposition, Acta metall. 9, 795 (1961)
[18]Choo, S. M.; Chung, S. K.; Lee, Y. J.: A conservative difference scheme for the viscous Cahn–Hilliard equation with a nonconstant gradient energy coefficient, Appl. numer. Math. 51, 207 (2004) · Zbl 1112.65078 · doi:10.1016/j.apnum.2004.02.006
[19]Gurtin, M.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Physica D 92, 178 (1996) · Zbl 0885.35121 · doi:10.1016/0167-2789(95)00173-5
[20]Junseok, K.: A numerical method for the Cahn–Hilliard equation with a variable mobility, Commun. nonlinear sci. Numer. simul. 12, 1560 (2007) · Zbl 1118.35049 · doi:10.1016/j.cnsns.2006.02.010
[21]De Mello, E. V. L; Otton, T.; Da Silveira, F.: Numerical study of the Cahn–Hilliard equation in one, two and three dimensions, Physica A 347, 429 (2005)
[22]Li, D.; Zhong, C.: Global attractor for the Cahn–Hilliard system with fast growing nonlinearity, J. differential equations 149, 191 (1998) · Zbl 0912.35029 · doi:10.1006/jdeq.1998.3429
[23]Liao, S. J.: An approximate solution technique not depending on small parameters: A special example, Internat. J. Non-linear mech. 30, 371 (1995) · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[24]He, J. H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Internat. J. Non-linear mech. 35, 37 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[25]Abbasbandy, S.: Application of he’s homotopy perturbation method to functional integral equations, Chaos solitons fractals 31, 1243 (2007) · Zbl 1139.65085 · doi:10.1016/j.chaos.2005.10.069
[26]Abbasbandy, S.: A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method, Chaos solitons fractals 31, 257 (2007)
[27]Abbasbandy, S.: Application of he’s homotopy perturbation method for Laplace transform, Chaos solitons fractals 30, 1206 (2006) · Zbl 1142.65417 · doi:10.1016/j.chaos.2005.08.178
[28]Inc, M.; Uğurlu, Y.: Numerical simulation of the regularized long wave equation by he’s homotopy perturbation method, Phys. lett. A 369, 173 (2007) · Zbl 1209.65110 · doi:10.1016/j.physleta.2007.04.074
[29]Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994)
[30]Cherruault, Y.: Convergence of Adomian’s method, Kybernetes 18, 21 (1989) · Zbl 0697.65051 · doi:10.1108/eb005812
[31]Repaci, A.: Nonlinear dynamical systems: on the accuracy of Adomian’s decomposition method, Appl. math. Lett. 3, 35 (1990) · Zbl 0719.93041 · doi:10.1016/0893-9659(90)90042-A
[32]Cherruault, Y.; Adomian, G.: Decomposition methods: A new proof of convergence, Math. comput. Modelling 18, 103 (1993) · Zbl 0805.65057 · doi:10.1016/0895-7177(93)90233-O
[33]Sadighi, A.; Ganji, D. D.: Exact solutions of Laplace equation by homotopy-perturbation and Adomian decomposition methods, Phys. lett. A 367, 83 (2007) · Zbl 1209.65136 · doi:10.1016/j.physleta.2007.02.082
[34]Abbasbandy, S.: Numerical solutions of the integral equations: homotopy perturbation method and Adomian’s decomposition method, Appl. math. Comput. 173, 493 (2006) · Zbl 1090.65143 · doi:10.1016/j.amc.2005.04.077
[35]Abbasbandy, S.: Modified homotopy perturbation method for nonlinear equations and comparison with Adomian decomposition method, Appl. math. Comput. 172, 431 (2006) · Zbl 1088.65043 · doi:10.1016/j.amc.2005.02.015