zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The norm inequalities for the weighted Cesaro mean operators. (English) Zbl 1165.42305
Summary: This paper gives some necessary and sufficient conditions for the weighted Cesaro mean operators to be bounded on Herz spaces. The corresponding new operator norm inequalities are obtained.
MSC:
42B25Maximal functions, Littlewood-Paley theory
26D10Inequalities involving derivatives, differential and integral operators
47B38Operators on function spaces (general)
References:
[1]Xiao, J.: Lp and BMO bounds of weighted Hardy–Littlewood averages, J. math. Anal. appl. 262, 660-666 (2001) · Zbl 1009.42013 · doi:10.1006/jmaa.2001.7594
[2]Giang, D. V.; Moricz, F.: The Cesàro operator is bounded on the Hardy space H1, Acta sci. Math. (Szeged) 61, 535-544 (1995) · Zbl 0855.47020
[3]Moricz, F.: The harmonic Cesàro and copson operators on the spaces lp,1p,H1, and BMO, Acta sci. Math. (Szeged) 65, 293-310 (1999) · Zbl 0954.42004
[4]Herz, C.: Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms, J. math. Mech. 18, 283-324 (1968) · Zbl 0177.15701
[5]Ii, A. Baernstein; Sawyer, E. T.: Embedding and multiplier theorems for Hp(Rn), Mem. amer. Math. soc. 53, No. 318, 1-82 (1985)
[6]Li, X.; Yang, D.: Boundedness of some sublinear operators on Herz spaces, Illinois J. Math. 40, No. 3, 484-501 (1996) · Zbl 0956.46025
[7]Lu, S.; Yang, D.: The weighted Herz-type Hardy spaces and its applications, Sci. China, ser. A 38, 662-673 (1995) · Zbl 0832.42013
[8]Hernandez, Eugenio; Weiss, Guido; Yang, Dachun: The ϕ-transform and wavelet characterizations of Herz-type spaces, Collect. math. 47, No. 3, 285-320 (1996) · Zbl 0878.42011 · doi:http://www.mat.ub.es/Collectanea/1996.html
[9]Beckenbach, E. F.; Bellman, R.: Inequalities, (1983)