zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solutions of integral and integro-differential equation systems by using differential transform method. (English) Zbl 1165.45300
Summary: The differential transform method (DTM) is applied to both integro-differential and integral equation systems. The method is further expanded with a formulation to treat Fredholm integrals. If the system considered has a solution in terms of the series expansion of known functions, this powerful method catches the exact solution. So as to show this capability and robustness, some systems of integral and integro-differential equations are solved as numerical examples.
45B05Fredholm integral equations
65N99Numerical methods for BVP of PDE
[1]Biazar, J.; Babolian, E.; Islam, R.: Solution of a system of Volterra integral equations of the first kind by Adomian method, Appl. math. Comput. 139, 249-258 (2003) · Zbl 1027.65180 · doi:10.1016/S0096-3003(02)00173-X
[2]Goghary, H. Sadeghi; Javadi, Sh.; Babolian, E.: Restarted Adomian method for system of nonlinear Volterra integral equations, Appl. math. Comput. 161, 745-751 (2005) · Zbl 1061.65148 · doi:10.1016/j.amc.2003.12.072
[3]Maleknejad, K.; Kajani, M. Tavassoli: Solving linear integro-differential equation system by Galerkin methods with hybrid functions, Appl. math. Comput. 159, 603-612 (2004) · Zbl 1063.65145 · doi:10.1016/j.amc.2003.10.046
[4]Maleknejad, K.; Mirzaee, F.; Abbasbandy, S.: Solving linear integro-differential equations system by using rationalized Haar functions method, Appl. math. Comput. 155, 317-328 (2004) · Zbl 1056.65144 · doi:10.1016/S0096-3003(03)00778-1
[5]J. Biazar, H. Ghazvini, M. Eslami, He’s homotopy perturbation method for systems of integro-differential equations, Chaos Solitons. Fractals, (2007) (in press) doi:10.1016/j.chaos.2007.06.001
[6]Yusufoglu (Agadjanov), E.: An efficient algorithm for solving integro-differential equations system, Appl. math. Comput. 192, 51-55 (2007) · Zbl 1193.65234 · doi:10.1016/j.amc.2007.02.134
[7]Wang, S. Q.; He, J. H.: Variational iteration method for solving integro-differential equations, Phys. lett. A. 367, 188-191 (2007) · Zbl 1209.65152 · doi:10.1016/j.physleta.2007.02.049
[8]He, J. H.: Homotopy perturbation technique, Comput. method appl. Math. 178, 257-262 (1999)
[9]He, J. H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int J. Non-linear mech. 35, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[10]He, J. H.: Homotopy perturbation method: A new nonlinear analytical technique, Appl. math. Comput. 135, 73-79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[11]He, J. H.: Comparison of homotopy perturbation method and homotopy analysis method, Appl. math. Comput. 156, 527-539 (2004) · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[12]Bildik, N.; Konuralp, A.: Two-dimensional differential transform method, Adomian’s decomposition method, and variational iteration method for partial differential equations, Int. J. Comput. math. 83, 973-987 (2006) · Zbl 1115.65365 · doi:10.1080/00207160601173407
[13]Bildik, N.; Konuralp, A.: The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, Int. J. Nonlinear sci. 7, 65-70 (2006)
[14]He, J. H.: New interpretation of homotopy perturbation method, Internat. J. Modern phys. B. 20, 2561-2568 (2006)
[15]He, J. H.: Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern phys. B. 20, 1141-1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[16]Zhou, J. K.: Differential transformation and its application for electrical circuits, (1986)
[17]Ozdemir, O.; Kaya, M. O.: Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method, J. sound vib. 289, 413-420 (2006)
[18]Arikoglu, A.; Ozkol, I.: Solution of difference equations by using differential transform method, Appl. math. Comput. 174, 1216-1228 (2006) · Zbl 1138.65309 · doi:10.1016/j.amc.2005.06.013
[19]Arikoglu, A.; Ozkol, I.: Solution of differential–difference equations by using differential transform method, Appl. math. Comput. 181, 153-162 (2006) · Zbl 1148.65310 · doi:10.1016/j.amc.2006.01.022
[20]Arikoglu, A.; Ozkol, I.: Solution of fractional differential equations by using differential transform method, Chaos soliton. Fract. 34, 1473-1481 (2007) · Zbl 1152.34306 · doi:10.1016/j.chaos.2006.09.004
[21]Keskin, Y.; Kurnaz, A.; Kiris, M. E.; Oturanc, G.: Approximate solutions of generalized pantograph equations by the differential transform method, Int. J. Nonlinear sci. 8, 159-164 (2007)
[22]Arikoglu, A.; Ozkol, I.: Solution of boundary value problems for integro-differential equations by using differential transform method, Appl. math. Comput. 168, 1145-1158 (2005) · Zbl 1090.65145 · doi:10.1016/j.amc.2004.10.009
[23]Delves, L. M.; Mohamed, J. L.: Computational methods for integral equations, (1985)