zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Fourier method for the fractional diffusion equation describing sub-diffusion. (English) Zbl 1165.65053
The paper focuses on the initial-boundary value problem of the fractional diffusion equation describing sub-diffusion. A brief review of relevant literature is included, thus setting the paper in context. A paper by T. A. M. Langlands and B. I. Henry [J. Comput. Phys. 205, No. 2, 719–736 (2005; Zbl 1072.65123)] in which they proposed an implicit numerical scheme (L 1 approximation) and discussed its accuracy and stability, is referred to. The motivation behind this paper is to build on this work, by deriving the global accuracy of the presented implicit scheme and establishing unconditional stability for all λ in the range 0<λ1. A Fourier method is used. In Section 2 an implicit difference approximation scheme (IDAS) is presented and its unconditional stability and L 2 -convergence are investigated in Sections 3 and 4. In Section 5 the implicit difference scheme is written in matrix form and is proved to be uniquely solvable. The paper concludes with two numerical examples, each describing sub-diffusion (one wit a non-homogeneous term and the second with a homogeneous term), to confirm their theoretical results. The examples demonstrate that the IDAS is unconditionally stable and convergent ant that it can be applied to simulate fractional dynamical systems. The authors state that the Fourier method technique used to analyse stability and convergence can be extended to other fractional partial differential equations.
65M12Stability and convergence of numerical methods (IVP of PDE)
65M70Spectral, collocation and related methods (IVP of PDE)
35B35Stability of solutions of PDE