zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An elementary introduction to the homotopy perturbation method. (English) Zbl 1165.65374
Summary: This paper is an elementary introduction to the concepts of the homotopy perturbation method. Particular attention is paid to giving an intuitive grasp for the solution procedure throughout the paper.
MSC:
65L99Numerical methods for ODE
65-01Textbooks (numerical analysis)
References:
[1]Ariel, P. D.: The three-dimensional flow past a stretching sheet and the homotopy perturbation method, Comput. math. Appl. 54, 920-925 (2007) · Zbl 1138.76029 · doi:10.1016/j.camwa.2006.12.066
[2]T.M.A. El-Mistikawy, Comment on the three-dimensional flow past a stretching sheet and the homotopy perturbation method, Comput. Math. Appl., in press (doi:10.1016/j.camwa.2008.06.004)
[3]Ariel, P. D.; Hayat, T.; Asghar, S.: Homotopy perturbation method and axisymmetric flow over a stretching sheet, Int. J. Nonlinear sci. Num. 7, 399-406 (2006)
[4]Belendez, A.; Hernandez, A.; Belendez, T.: Application of he’s homotopy perturbation method to the Duffing-harmonic oscillator, Int. J. Nonlinear sci. Num. 8, 79-88 (2007)
[5]Ganji, D. D.; Sadighi, A.: Application of he’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. Nonlinear sci. Num. 7, 411-418 (2006)
[6]He, J. H.: Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern phys. B. 20, 1141-1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[7]Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K.: Thin film flow of a third grade fluid on a moving belt by he’s homotopy perturbation method, Int. J. Nonlinear sci. Num. 7, 7-14 (2006)
[8]He, J. H.: Modified Lindstedt–Poincarè methods for some strongly nonlinear oscillations part III: Double series expansion, Int. J. Nonlinear sci. Num. 2, 317-320 (2001) · Zbl 1072.34507 · doi:10.1515/IJNSNS.2001.2.4.317
[9]He, J. H.: Modified Lindstedt–Poincarè methods for some strongly non-linear oscillations part I: Expansion of a constant, Internat. J. Nonlinear mech. 37, 309-314 (2002) · Zbl 1116.34320 · doi:10.1016/S0020-7462(00)00116-5
[10]He, J. H.: Modified Lindstedt–Poincarè methods for some strongly non-linear oscillations part II: A new transformation, Internat. J. Nonlinear mech. 37, 315-320 (2002) · Zbl 1116.34321 · doi:10.1016/S0020-7462(00)00117-7
[11]He, J. H.: Modified straightforward expansion, Meccanica 34, 287-289 (1999)
[12]He, J. H.: New interpretation of homotopy perturbation method, Internat. J. Modern phys. B 20, 2561-2568 (2006)
[13]Shou, D. H.; He, J. H.: Application of parameter-expanding method to strongly nonlinear oscillators, Int. J. Nonlinear sci. Num. 8, 121-124 (2007)
[14]Wang, S. Q.; He, J. H.: Nonlinear oscillator with discontinuity by parameter-expansion method, Chaos solitons fractals 35, 688-691 (2008) · Zbl 1210.70023 · doi:10.1016/j.chaos.2007.07.055
[15]Xu, L.: Application of he’s parameter-expansion method to an oscillation of a mass attached to a stretched elastic wire, Phys. lett. A 368, 259-262 (2007)
[16]Xu, L.: He’s parameter-expanding methods for strongly nonlinear oscillators, J. comput. Appl. math. 207, 148-154 (2007) · Zbl 1120.65084 · doi:10.1016/j.cam.2006.07.020
[17]Xu, L.: Determination of limit cycle by he’s parameter-expanding method for strongly nonlinear oscillators, J. sound vib. 302, 178-184 (2007)
[18]Zhang, L. N.; Xu, L.: Determination of the limit cycle by he’s parameter-expansion for oscillators in a u(3)/(1+u(2)) potential, Z. naturforsch. A 62, 396-398 (2007) · Zbl 1203.34053 · doi:http://www.znaturforsch.com/aa/v62a/c62a.htm
[19]J.H. He, Nonperturbative methods for strongly nonlinear problems, Dissertation.de-Verlag im Internet GmbH 2006