zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of nonlinear Volterra-Fredholm integro-differential equations. (English) Zbl 1165.65404
Summary: The aim of this paper is to present an efficient analytical and numerical procedure for solving the high-order nonlinear Volterra-Fredholm integro-differential equations. Our method depends mainly on a Taylor expansion approach. This method transforms the integro-differential equation and the given conditions into the matrix equation. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments.
MSC:
65R20Integral equations (numerical methods)
45J05Integro-ordinary differential equations
References:
[1]P. Darania, E. Abadian, A.V. Oskoi, Linearization method for solving nonlinear integral equations, Math. Probl. Eng. (2006) 1–10, Article ID 73714 · Zbl 1200.65109 · doi:10.1155/MPE/2006/73714
[2]Darania, P.; Abadian, E.: A method for the numerical solution of the integro-differential equations, Appl. math. And comput. 188, 657-668 (2007) · Zbl 1121.65127 · doi:10.1016/j.amc.2006.10.046
[3]P. Darania, M. Hadizadeh, On the RF-pair operations for the exact solution of some classes of nonlinear Volterra integral equations, Math. Probl. Eng. (2006) 1–11, Article ID 97020 · Zbl 1196.45003 · doi:10.1155/MPE/2006/97020
[4]Tang, T.; Mckee, S.; Diogo, T.: Product integration method for an integral equation with logarithmic singular kernel, Appl. numer. Math. 9, 259-266 (1992) · Zbl 0749.65099 · doi:10.1016/0168-9274(92)90020-E
[5]Diogo, A. T.; Mckee, S.; Tang, T.: A Hermite-type collocation method for the solution of an integral equation with a certain weakly singular kernel, IMA J. Numer. anal. 11, 595-605 (1991) · Zbl 0738.65096 · doi:10.1093/imanum/11.4.595
[6]Wazwaz, A. M.; El-Sayed, S. M.: A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. math. Comput. 122, 393-404 (2001) · Zbl 1027.35008 · doi:10.1016/S0096-3003(00)00060-6
[7]Kanwal, R. P.; Liu, K. C.: A Taylor expansion approach for solving integral equations, Int. J. Math. educ. Sci. technol. 3, 411-414 (1989) · Zbl 0683.45001 · doi:10.1080/0020739890200310
[8]Sezer, M.: Taylor polynomial solution of Volterra integral equations, Int. J. Math. educ. Sci. technol. 5, 625-633 (1994) · Zbl 0823.45005 · doi:10.1080/0020739940250501
[9]Kauthen, J. P.: Continuous time collocation method for Volterra–Fredholm integral equations, Numer. math. 56, 409 (1989) · Zbl 0662.65116 · doi:10.1007/BF01396646
[10]Yalcinbas, S.: Taylor polynomial solution of nonlinear Volterra–Fredholm integral equations, Appl. math. Comput. 127, 195-206 (2002) · Zbl 1025.45003 · doi:10.1016/S0096-3003(00)00165-X
[11]Yalcinbas, S.; Sezer, M.: The approximate solution of high-order linear Volterra–Fredholm integro-differential equations in terms of Taylor polynomials, Appl. math. Comput. 112, 291-308 (2000) · Zbl 1023.65147 · doi:10.1016/S0096-3003(99)00059-4
[12]Maleknejad, K.; Mahmoudi, Y.: Taylor polynomial solution of high-order nonlinear Volterra–Fredholm integro-differential equations, Appl. math. Comput. 145, 641-653 (2003) · Zbl 1032.65144 · doi:10.1016/S0096-3003(03)00152-8
[13]Darania, P.; Abadian, E.: Development of the Taylor expansion approach for nonlinear integro-differential equations, Int. J. Contemp. math. Sci. 1, No. 14, 651-664 (2006) · Zbl 1157.65516