zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on application of integral operator in learning theory. (English) Zbl 1165.68059
Summary: By the aid of the properties of the square root of positive operators we refine the consistency analysis of regularized least square regression in a reproducing kernel Hilbert space. Sharper error bounds and faster learning rates are obtained when the sampling sequence satisfies a strongly mixing condition.
68T05Learning and adaptive systems
[1]Aronszajn, N.: Theory of reproducing kernels, Trans. amer. Math. soc. 68, 337-404 (1950) · Zbl 0037.20701 · doi:10.2307/1990404
[2]Athreya, K. B.; Pantula, S. G.: Mixing properties of harris chains and autoregressive processes, J. appl. Probab. 23, 880-892 (1986) · Zbl 0623.60087 · doi:10.2307/3214462
[3]Bousquet, O.; Elisseeff, A.: Stability and generalization, J. Mach learn. Res. 2, 499-526 (2002) · Zbl 1007.68083 · doi:10.1162/153244302760200704
[4]Carrasco, M.; Chen, X.: Mixing and moment properties of various GARCH and stochastic volatility models, Econom. theory 18, 17-39 (2002) · Zbl 1181.62125 · doi:10.1017/S0266466602181023
[5]Cucker, F.; Zhou, D. X.: Learning theory: an approximation theory viewpoint, (2007)
[6]Douglas, R. G.: Banach algebra techniques in operator theory, (1998)
[7]Evgeniou, T.; Pontil, M.; Poggio, T.: Regularization networks and support vector machines, Adv. comput. Math. 13, 1-50 (2000) · Zbl 0939.68098 · doi:10.1023/A:1018946025316
[8]Gouriéroux, C.: ARCH model and financial application, (1997)
[9]Lowner, K.: Über monotone matrixfunktionen, Math. Z. 38, 177-216 (1934) · Zbl 0008.11301 · doi:10.1007/BF01170633
[10]Modha, D. S.: Minimum complexity regression estimation with weakly dependent observations, IEEE trans. Inform. theory 42, 2133-2145 (1996) · Zbl 0868.62015 · doi:10.1109/18.556602
[11]Pedersen, G. K.: Some operator monotone functions, Proc. amer. Math. soc. 36, 309-310 (1972) · Zbl 0256.47019 · doi:10.2307/2039083
[12]Smale, S.; Zhou, D. X.: Estimating the approximation error in learning theory, Anal. appl. 1, 17C41 (2003) · Zbl 1079.68089 · doi:10.1142/S0219530503000089
[13]Smale, S.; Zhou, D. X.: Shannon sampling II: Connections to learning theory, Appl. comput. Harmon. anal. 19, 285-302 (2005) · Zbl 1107.94008 · doi:10.1016/j.acha.2005.03.001
[14]Smale, S.; Zhou, D. X.: Learning theory estimates via integral operators and their approximations, Constr. approx. 26, 153-172 (2007) · Zbl 1127.68088 · doi:10.1007/s00365-006-0659-y
[15]S. Smale, D.X. Zhou, Online learning with Markov sampling, Anal. Appl., in press · Zbl 1170.68022 · doi:10.1142/S0219530509001293
[16]H.W. Sun, Q. Wu, Regularized least square regression with dependent samples, Adv. Comput. Math. (2008), doi:10.1007/s10444-008-9099-y, in press
[17]Vapnik, V. N.: Statistical learning theory, (1998) · Zbl 0935.62007
[18]White, H.: Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings, Neural networks 3, 535-549 (1990)
[19]Wu, Q.; Ying, Y. M.; Zhou, D. X.: Learning rates of least-square regularized regression, Found. comput. Math. 6, 171-192 (2006) · Zbl 1100.68100 · doi:10.1007/s10208-004-0155-9
[20]Xu, Y. L.; Chen, D. R.: Learning rates of regularized regression for exponentially strongly mixing sequence, J. statist. Plann. 138, No. 7, 2180-2189 (2008) · Zbl 1134.62050 · doi:10.1016/j.jspi.2007.09.003
[21]Zhang, T.: Leave-one-out bounds for kernel methods, Neural comput. 15, 1397-1437 (2003) · Zbl 1085.68144 · doi:10.1162/089976603321780326