[1] | Mauldon, A. D.: An inverse technique for developing models for fluid-flow in fracture systems using simulated annealing, Water resources research 29, No. 11, 3775-3789 (1993) |

[2] | Deutsch, C. V.; Cockerham, P. W.: Practical considerations in the application of simulated annealing to stochastic simulation, Mathematical geology 26, No. 1, 67-82 (1994) |

[3] | Day-Lewis, F. D.; Hsieh, P. A.; Gorelick, S. M.: Identifying fracture-zone geometry using simulated annealing and hydraulic-connection data, Water resources research 36, No. 7, 1707-1721 (2000) |

[4] | Nakao, S.; Najita, J.; Karasaki, K.: Hydraulic well testing inversion for modeling fluid flow in fractured rocks using simulated annealing: A case study at raymond field site, California, Journal of applied geophysics 45, No. 3, 203-223 (2000) |

[5] | Gauthier, B. D. M.; Garcia, M.; Daniel, J. M.: Integrated fractured reservoir characterization: A case study in a north africa field, Spe reservoir evaluation engineering 5, No. 4, 284-294 (2002) |

[6] | Tran, N. H.; Chen, Z.; Rahman, S. S.: Integrated conditional global optimisation for discrete fracture network modelling, Computers geosciences 32, No. 1, 17-27 (2006) |

[7] | Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P.: Optimization by simulated annealing, Science 220, No. 4598, 671-680 (1983) · Zbl 1225.90162 · doi:10.1126/science.220.4598.671 |

[8] | Sen, M. K.; Stoffa, P. L.: Global optimization methods in geophysical inversion, Advances in exploration geophysics 4, 281 (1995) · Zbl 0871.90107 |

[9] | Kosko, B.: Neural networks and fuzzy systems : A dynamical systems approach to machine intelligence, (1991) |