zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. (English) Zbl 1165.76052
Summary: The study investigates the effects of heat and mass transfer on peristaltic transport in a porous space with compliant walls. The fluid is electrically conducting in the presence of a uniform magnetic field. An analytic solution is obtaind under long-wavelength and low-Reynolds number approximations. We also derive expressions for stream function, temperature, concentration and heat transfer coefficient. Numerical results are graphically discussed for various physical parameters of interest.
76S05Flows in porous media; filtration; seepage
76W05Magnetohydrodynamics and electrohydrodynamics
80A20Heat and mass transfer, heat flow
[1]Vajravelu, K.; Radhakrishnamacharya, G.; Krishnamurty, V. Radha: Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation, Int. J. Nonlinear mech. 42, 754-759 (2007) · Zbl 1200.76192 · doi:10.1016/j.ijnonlinmec.2007.02.014
[2]Srinivasacharya, D.; Radhakrishnamarya, G.; Srinivasulu, Ch.: Influence of wall properties on peristalsis in the presence of magnetic field, Int. J. Fluid mech. Res. 34, 374-384 (2007)
[3]Radhakrishnamacharya, G.; Srinivasulu, Ch.: Influence of wall properties on peristaltic transport with heat transfer, CR mech. 335, 369-373 (2007) · Zbl 1144.76067 · doi:10.1016/j.crme.2007.05.002
[4]Srinivas, S.; Pushparaj, V.: Nonlinear peristaltic transport in an inclined asymmetric channel, Commun. nonlinear sci. Numer. simulat. 13, 1782-1795 (2008)
[5]Kothandapani, M.; Srinivas, S.: Non-linear peristaltic transport of Newtonian fluid in an inclined asymmetric channel through a porous medium, Phys. lett. A 372, 1265-1276 (2008) · Zbl 1217.76105 · doi:10.1016/j.physleta.2007.09.040
[6]Mekheimer, Kh.S.: Effect of the induced magnetic field on peristaltic flow of a couple stress fluid, Phys. lett. A 372, 4271-4278 (2008) · Zbl 1221.76231 · doi:10.1016/j.physleta.2008.03.059
[7]Muthu, P.; Kumar, B. V. Rathish; Chandra, Peeyush: Peristaltic motion of micropolar fluid in circular cylindrical tubes: effect of wall properties, Appl. math. Model. 32, 2019-2033 (2008) · Zbl 1145.74343 · doi:10.1016/j.apm.2007.06.034
[8]Elnaby, M. A. Abd; Haroun, M. H.: A new model for study the effect of wall properties on peristaltic transport of a viscous fluid, Commun. nonlinear sci. Numer. simulat. 13, 752-762 (2008) · Zbl 1221.76263 · doi:10.1016/j.cnsns.2006.07.007
[9]Ali, N.; Hayat, T.; Asghar, S.: Peristaltic flow of a Maxwell fluid in a channel with compliant walls, Chaos solitons fract. 39, 407-416 (2009) · Zbl 1197.76017 · doi:10.1016/j.chaos.2007.04.010
[10]Hayat, T.; Javed, Maryiam; Asghar, S.: MHD peristaltic motion of Johnson – Segalman fluid in a channel with compliant walls, Phys. lett. A 372, 5026-5036 (2008) · Zbl 1221.76219 · doi:10.1016/j.physleta.2008.03.065
[11]Mekheimer, Kh.S.; Elmaboud, Y. Abd: The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope, Phys. lett. A 372, 1657-1665 (2008) · Zbl 1217.76106 · doi:10.1016/j.physleta.2007.10.028
[12]Srinivas, S.; Kothandapani, M.: Peristaltic transport in an asymmetric channel with heat transfer- A, Int. commun. Heat mass transfer 35, 514-522 (2008)
[13]Kothandapani, M.; Srinivas, S.: On the influence of wall properties in the MHD peristaltic transport with heat transfer and porous medium, Phys. lett. A 372, 4586-4591 (2008) · Zbl 1221.76044 · doi:10.1016/j.physleta.2008.04.050
[14]Hayat, T.; Qureshi, M. Umar; Hussain, Q.: Effect of heat transfer on the peristaltic flow of an electrically conducting fluid in a porous space, Appl. math. Model. 22, 1862-1873 (2009) · Zbl 1205.76254 · doi:10.1016/j.apm.2008.03.024
[15]Haroun, M. H.: Non-linear peristaltic of a fourth grade fluid in an inclined asymmetric channel, Comput. mater. Sci. 39, 324-333 (2007)
[16]Mekheimer, Kh. S.: Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels, Appl. math. Comput. 153, 763-777 (2004) · Zbl 1041.92006 · doi:10.1016/S0096-3003(03)00672-6
[17]Hayat, T.; Masood, S.; Asghar, S.: Peristaltic flow of magnetohydrodynamic Johnson – Segalman fluid, Nonlinear dyn. 40, 375-385 (2005) · Zbl 1094.76004 · doi:10.1007/s11071-005-7799-0
[18]Hayat, T.; Afsar, A.; Ali, N.: Peristaltic transport of a Johnson – Segalman fluid in an asymmetric channel, Math. comput. Model. 47, 380-400 (2008) · Zbl 1130.76010 · doi:10.1016/j.mcm.2007.04.012
[19]Ali, N.; Hayat, T.: Peristaltic flow of a micropolar fluid in an asymmetric channel, Comput. math. Appl. 55, 589-608 (2008) · Zbl 1137.76007 · doi:10.1016/j.camwa.2007.06.003
[20]Hayat, T.; Alvi, Nida; Ali, N.: Peristaltic mechanism of a Maxwell fluid in an asymmetric channel, Nonlinear anal.: real world appl. 9, 1474-1490 (2008) · Zbl 1154.74334 · doi:10.1016/j.nonrwa.2007.03.013
[21]Hayat, T.; Ali, N.; Asghar, S.: Hall effects on peristaltic flow of a Maxwell fluid in a porous medium, Phys. lett. A 363, 397-403 (2007) · Zbl 1197.76126 · doi:10.1016/j.physleta.2006.10.104
[22]Hayat, T.; Ali, N.: Peristaltically induced motion of a MHD third grade fluid in a deformable tube, Physica A 370, 225-239 (2006)
[23]Hayat, T.; Javed, Maryiam; Ali, N.: MHD peristaltic transport of a Jeffrey fluid in a channel with compliant walls and porous space, Trans. porous media 74, 259-274 (2008)
[24]Kothandapani, M.; Srinivas, S.: Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel, Int. J. Non-linear mech. 43, 915-924 (2008)
[25]Eldabe, N. T.; El-Sayed, M. F.; Ghaly, A. Y.; Sayed, H. M.: Mixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosity, Arch. appl. Mech. 78, 599-624 (2008) · Zbl 1169.76057 · doi:10.1007/s00419-007-0181-6
[26]El Dabe, N. T.; Moatimid, G. M.; Ali, H. S. M.: Rivlin – ericksen fluid in tube of varying cross-section with mass and heat transfer, Z. naturforsch. 57 a, 863-873 (2002)
[27]Eckert, E. R. G.; Drake, R. M.: Analysis of heat and mass transfer, (1972) · Zbl 0247.76079
[28]Dursunkaya, Z.; Worek, W. M.: Diffusion-thermo and thermal-diffusion effects in transient and steady natural convection from vertical surface, Int. J. Heat mass transfer 35, 2060-2065 (1992)
[29]Postelnicu, A.: Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Sorét and dufour effects, Int. J. Heat mass transfer 47, 1467-1472 (2004) · Zbl 1045.76568 · doi:10.1016/j.ijheatmasstransfer.2003.09.017
[30]Alam, M. S.; Rahman, M. M.; Samad, M. A.: Numerical study of the combined free-forced convection and mass transfer flow past a vertical porous plate in a porous medium with heat generation and thermal diffusion, Nonlinear anal.: model. Control 11, 331-343 (2006) · Zbl 1125.76389
[31]Mittra, T. K.; Prasad, S. N.: On the influence of wall properties and Poiseuille flow in peristalsis, J. boimech. 6, 81-693 (1973)
[32]Victor, S. A.; Shah, V. L.: Heat transfer to blood flowing in a tube, Biorheology 12, 361-368 (1975)
[33]Radhakrishnamacharya, G.; Murthy, V. Radhakrishna: Heat transfer to peristaltic transport in a non-uniform channel, Defence sci. J. 43, 275-280 (1993)
[34]Srivastava, V. P.; Srivastava, L. M.: Influence of wall elasticity and Poiseuille flow induced by peristaltic induced flow of a particle-fluid mixture, Int. J. Eng. sci. 35, 799-825 (1997) · Zbl 0909.76110 · doi:10.1016/S0020-7225(97)00053-0
[35]Ogulu, A.: Effect of heat generation on low Reynolds number fluid and mass transport in a single lymphatic blood vessel with uniform magnetic field, Int. commun. Heat mass transfer 33, 790-799 (2006)
[36]Davies, C.; Carpenter, P. W.: Instabilities in a plane channel flow between compliant walls, J. fluid mech. 352, 205-243 (1997) · Zbl 0903.76029 · doi:10.1017/S0022112097007313