zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate. (English) Zbl 1165.76307
Summary: The velocity field and the adequate shear stress corresponding to the unsteady flow of a generalized Maxwell fluid are determined using Fourier sine and Laplace transforms. They are presented as a sum of the Newtonian solutions and the corresponding non-Newtonian contributions. The similar solutions for Maxwell and Newtonian fluids, performing the same motion, are obtained as limiting cases of our general results. Graphical illustrations show that the velocity profiles corresponding to a generalized Maxwell fluid are going to that for an ordinary Maxwell fluid if α1.
MSC:
76A05Non-Newtonian fluids
26A33Fractional derivatives and integrals (real functions)
References:
[1]Choi, J. J.; Rusak, Z.; Tichy, J. A.: Maxwell fluid suction flow in a channel, J. non-Newton fluid mech. 85, 165-187 (1999) · Zbl 0941.76079 · doi:10.1016/S0377-0257(98)00197-9
[2]Palade, L. I.; Attane, P.; Huilgol, R. R.; Mena, B.: Anomalous stability behavior of a properly invariant constitutive equation which generalizes fractional derivative models, Internat. J. Engrg. sci. 37, 315-329 (1999) · Zbl 1210.76021 · doi:10.1016/S0020-7225(98)00080-9
[3]Rossikhin, Y. A.; Shitikova, M. V.: A new method for solving dynamic problems of fractional derivative viscoelasticity, Internat. J. Engrg. sci. 39, 149-176 (2001)
[4]N. Makris, Theoretical and experimental investigation of viscous dampers in applications of seismic and vibration isolation, Ph.D. Thesis, State Univ. of New York at Buffalo, Buffalo, NY, 1991
[5]Makris, N.; Constantinou, M. C.: Fractional derivative model for viscous dampers, J. struct. Eng. ASCE 117, 2708-2724 (1991)
[6]Tan, W.; Xu, M.: Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model, Acta mech. Sinica 18, 342-349 (2002)
[7]Tan, W.; Pan, W.; Xu, M.: A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Internat. J. Non-linear mech. 38, 645-650 (2003)
[8]Hayat, T.; Nadeem, S.; Asghar, S.: Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model, Appl. math. Comput. 151, 153-161 (2004) · Zbl 1161.76436 · doi:10.1016/S0096-3003(03)00329-1
[9]Qi, H.; Jin, H.: Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell model between coaxial cylinders, Acta mech. Sinica 22, 301-305 (2006) · Zbl 1202.76016 · doi:10.1007/s10409-006-0013-x
[10]Yin, Y.; Zhu, K. Q.: Oscillating flow of a viscoelastic fluid in a pipe with the fractional Maxwell model, Appl. math. Comput. 173, 231-242 (2006) · Zbl 1105.76009 · doi:10.1016/j.amc.2005.04.001
[11]Shaowei, W.; Mingyu, X.: Exact solution on unsteady Couette flow of generalized Maxwell fluid with fractional derivative, Acta mech. 187, 103-112 (2006) · Zbl 1103.76011 · doi:10.1007/s00707-006-0332-9
[12]Qi, H.; Xu, M.: Unsteady flow of a viscoelastic fluid with fractional Maxwell model in a channel, Mech. res. Comm. 34, 210-212 (2007) · Zbl 1192.76008 · doi:10.1016/j.mechrescom.2006.09.003
[13]Tan, W.: Velocity overshoot of start-up flow for a Maxwell fluid in a porous half-space, Chin. phys. 15, 2644-2650 (2006)
[14]Khan, M.; Maqbool, K.; Hayat, T.: Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space, Acta mech. 184, 1-13 (2006) · Zbl 1096.76061 · doi:10.1007/s00707-006-0326-7
[15]Tan, W.; Masuoka, T.: Stability analysis of a Maxwell fluid in a porous medium heated from below, Phys. lett. A 360, 454-460 (2007)
[16]Khan, M.: Partial slip effects on the oscillatory flows of a fractional Jeffrey fluid in a porous medium, J. porous media. 10, 473-487 (2007)
[17]Khan, M.; Hayat, T.: Some exact solutions for fractional generalized Burgers fluid in a porous space, Nonlinear anal. RWA 9, 2288-2295 (2008) · Zbl 1156.76444 · doi:10.1016/j.nonrwa.2007.06.005
[18]Shaowei, W.; Tan, W.: Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below, Phys. lett. A 372, 3046-3050 (2008) · Zbl 1220.76031 · doi:10.1016/j.physleta.2008.01.024
[19]Xue, C.; Nie, J.: Exact solutions of Rayleigh-Stokes problem for heated generalized Maxwell fluid in a porous half-space, Math. prob. Eng. 2008 (2008) · Zbl 1151.76006 · doi:10.1155/2008/641431
[20]Qi, H.; Xu, M.: Stokes first problem for a viscoelastic fluid with generalized Oldroyd-B model, Acta mech. Sinica 23, 463-469 (2007) · Zbl 1202.76017 · doi:10.1007/s10409-007-0093-2
[21]Srivastava, P. N.: Non-steady helical flow of a visco-elastic liquid, Arch. mech. Stos. 18, 145-150 (1966)
[22]Tong, D.; Liu, Y.: Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe, Internat. J. Engrg. sci. 43, 281-289 (2005) · Zbl 1211.76014 · doi:10.1016/j.ijengsci.2004.09.007
[23]Tong, D.; Wang, R.; Yang, H.: Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe, Sci. China ser. G physics, mechanics astronomy 48, 485-495 (2005)
[24]Khan, M.; Ali, S. Hyder; Qi, H.: Some accelerated flows of a generalized Oldroyd-B fluid, Nonlinear anal. RWA (2007)
[25]Podlubny, I.: Fractional differential equations, (1999)
[26]Sneddon, I. N.: Fourier transforms, (1951)
[27]C.F. Lorenzo, T.T. Hartley, Generalized functions for the fractional calculus, NASA/TP-1999-209424, 1999
[28]Fetecau, C.; Prasad, S. C.; Rajagopal, K. R.: A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid, Appl. math. Modelling 31, 647-654 (2007)
[29]Vieru, D.; Fetecau, Corina; Fetecau, C.: Exact solutions for the flow of an Oldroyd-B fluid due to an infinite flat plate, Z. angew. Math. phys. 59, 834-847 (2008) · Zbl 1158.76004 · doi:10.1007/s00033-007-6133-8