zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Supply chain scheduling: Batching and delivery. (English) Zbl 1165.90455
Summary: Although the supply chain management literature is extensive, the benefits and challenges of coordinated decision making within supply chain scheduling models have not been studied. We consider a variety of scheduling, batching, and delivery problems that arise in an arborescent supply chain where a supplier makes deliveries to several manufacturers, who also make deliveries to customers. The objective is to minimize the overall scheduling and delivery cost, using several classical scheduling objectives. This is achieved by scheduling the jobs and forming them into batches, each of which is delivered to the next downstream stage as a single shipment. For each problem, we either derive an efficient dynamic programming algorithm that minimizes the total cost of the supplier or that of the manufacturer, or we demonstrate that this problem is intractable. The total system cost minimization problem of a supplier and manufacturer who make cooperative decisions is also considered. We demonstrate that cooperation between a supplier and a manufacturer may reduce the total system cost by at least 20%, or 25%, or by up to 100%, depending upon the scheduling objective. Finally, we identify incentives and mechanisms for this cooperation, thereby demonstrating that our work has practical implications for improving the efficiency of supply chains.

MSC:
90B35Scheduling theory, deterministic
90B50Management decision making, including multiple objectives
90B06Transportation, logistics