zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bare bones differential evolution. (English) Zbl 1165.90693
Summary: The barebones differential evolution (BBDE) is a new, almost parameter-free optimization algorithm that is a hybrid of the barebones particle swarm optimizer and differential evolution. Differential evolution is used to mutate, for each particle, the attractor associated with that particle, defined as a weighted average of its personal and neighborhood best positions. The performance of the proposed approach is investigated and compared with differential evolution, a Von Neumann particle swarm optimizer and a barebones particle swarm optimizer. The experiments conducted show that the BBDE provides excellent results with the added advantage of little, almost no parameter tuning. Moreover, the performance of the barebones differential evolution using the ring and Von Neumann neighborhood topologies is investigated. Finally, the application of the BBDE to the real-world problem of unsupervised image classification is investigated. Experimental results show that the proposed approach performs very well compared to other state-of-the-art clustering algorithms in all measured criteria.
MSC:
90C59Approximation methods and heuristics
References:
[1]Abbass, H., 2002. The self-adaptive Pareto differential evolution algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 831 – 836.
[2]Abbass, H., Sarker, R., Newton, C., 2001. PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 971 – 978.
[3]Bezdek, J.: A convergence theorem for the fuzzy ISODATA clustering algorithms, IEEE transactions on pattern analysis and machine intelligence 2, 1-8 (1980) · Zbl 0441.62055 · doi:10.1109/TPAMI.1980.4766964
[4]Clerc, M.; Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE transactions on evolutionary computation 6, No. 1, 58-73 (2002)
[5]Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, pp. 39 – 43.
[6]Engelbrecht, A.: Fundamentals of computational swarm intelligence, (2005)
[7]Forgy, E.: Cluster analysis of multivariate data: efficiency versus interpretability of classification, Biometrics 21, 768-769 (1965)
[8]Hendtlass, T.: A combined swarm differential evolution algorithm for optimization problems, Lecture notes in computer science 2070, 11-18 (2001) · Zbl 0981.68557 · doi:http://link.springer.de/link/service/series/0558/bibs/2070/20700011
[9]Kannan, S.; Slochanal, S.; Subbaraj, P.; Padhy, N.: Application of particle swarm optimization technique and its variants to generation expansion planning, Electric power systems research 70, No. 3, 203-210 (2004)
[10]Kennedy, J., 1999. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3, pp. 1931 – 1938.
[11]Kennedy, J., 2003. Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 80 – 87.
[12]Kennedy, J.; Eberhart, R. C.: Particle swarm optimization, , 1942-1948 (1995)
[13]Kennedy, J.; Mendes, R.: Population structure and particle performance, , 1671-1676 (2002)
[14]Kennedy, J.; Eberhart, R. C.; Shi, Y.: Swarm intelligence, (2001)
[15]Krink, T., Filipic, B., Fogel, G., 2004. Noisy optimization problems – A particular challenge for differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 332 – 339.
[16]Liu, J., Lampinen, J., 2002. A fuzzy adaptive differential revolution algorithm. In: Proceedings of the IEEE International Region 10 Conference, pp. 606 – 611.
[17]Omran, M., 2005. Particle swarm optimization methods for pattern recognition and image processing. PhD Thesis, University of Pretoria.
[18]Omran, M., Engelbrecht, A., Salman, A., 2005a. Differential evolution methods for unsupervised image classification. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 966 – 973.
[19]Omran, M.; Engelbrecht, A.; Salman, A.: Particle swarm optimization method for image clustering, International journal of pattern recognition and artificial intelligence. 19, No. 3, 297-322 (2005)
[20]Omran, M.; Salman, A.; Engelbrecht, A.: Self-adaptive differential evolution, Lecture notes in artificial intelligence 3801, 192-199 (2005)
[21]Omran, M., Engelbrecht, A., Salman, A., 2007. Differential evolution based on particle swarm optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 112 – 119.
[22]Peer, E.; Den Bergh, F. Van; Engelbrecht, A.: Using neighborhoods with the guaranteed convergence PSO, , 235-242 (2003)
[23]Price, K.; Storn, R.; Lampinen, J.: Differential evolution: A practical approach to global optimization, (2005)
[24]Puzicha, J., Hofmann, T., Buhmann, J.M., 2000. Histogram clustering for unsupervised image segmentation. In: IEEE Proceedings of the Computer Vision and Pattern Recognition, vol. 2, pp. 602 – 608.
[25]Qin, A., Suganthan, P., 2005. Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, 2005, pp. 1785 – 1791.
[26]Rönkkönen, J., Kukkonen, S., Price, K.V., 2005. Real-parameter optimization with differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 506 – 513.
[27]Shi, Y., Eberhart, R., 1998. A modified particle swarm optimizer. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 69 – 73.
[28]Storn, R., 1996. On the usage of differential evolution for function optimization. In: Proceedings of the Biennieal Conference of the North American Fuzzy Information Processing Society, pp. 519 – 523.
[29]Storn, R., Price, K., 1995. Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, International Computer Science Institute.
[30]Storn, R.; Price, K.: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization. 11, No. 4, 359-431 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[31]Talbi, H., Batouche, M., 2004. Hybrid particle swarm with differential evolution for multimodal image registration. In: Proceedings of the IEEE international conference on industrial technology, vol. 3, pp. 1567 – 1573.
[32]Den Bergh, F. Van: An analysis of particle swarm optimizers department of computer science, (2002)
[33]Den Bergh, F. Van; Engelbrecht, A.: A study of particle swarm optimization particle trajectories, Information sciences 176, No. 8, 937-971 (2006) · Zbl 1093.68105 · doi:10.1016/j.ins.2005.02.003
[34]Yao, X.; Liu, Y.; Lin, G.: Evolutionary programming made faster, IEEE transactions on evolutionary computation 3, No. 2, 82-102 (1999)
[35]Zhang, W.-J., Xie, X.-F., 2003. DEPSO: Hybrid particle swarm with differential evolution operator. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, pp. 3816 – 3821.