zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The normal parameter reduction of soft sets and its algorithm. (English) Zbl 1165.90699
Summary: This paper is concerned with the reduction of soft sets and fuzzy soft sets. Firstly, the problems of suboptimal choice and added parameter set of soft sets are analyzed. Then, we introduce the definition of normal parameter reduction in soft sets to overcome these problems. In addition, a heuristic algorithm of normal parameter reduction is presented. Two new definitions, parameter important degree and decision partition, are proposed for analyzing the algorithm of normal parameter reduction. Furthermore, the normal parameter reduction is also investigated in fuzzy soft sets.

MSC:
90C70Fuzzy programming
68T37Reasoning under uncertainty
03E72Fuzzy set theory
References:
[1]Zadeh, L. A.: Fuzzy sets, Inform. control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2]Pawlak, Z.: Rough sets, Int. J. Inform. comput. Sci. 11, 341-356 (1982)
[3]Molodtsov, D.: The theory of soft sets, (2004)
[4]Molodtsov, D.: Soft set theory-first results, Comput. math. Appl. 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[5]Aktas, H.; Cagman, N.: Soft sets and soft groups, Inform. sci. 177, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[6]Maji, P. K.; Roy, A. R.; Biswas, R.: An application of soft sets in a decision making problem, Comput. math. Appl. 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[7]Maji, P. K.; Bismas, R.; Roy, A. R.: Soft set theory, Comput. math. Appl. 45, 555-562 (2003)
[8]Chen, D.; Tsang, E. C. C.; Yeung, D. S.; Wang, X.: The parameterization reduction of soft sets and its applications, Computer and mathematics with applied 49, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[9]Pawlak, Z.: Rough set: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[10]Zimmerman, H. J.: Fuzzy set theory and its applications, (1996)
[11]Maji, P. K.; Biswas, R.; Roy, A. R.: Fuzzy soft sets, J. fuzzy math. 9, No. 3, 589-602 (2001) · Zbl 0995.03040
[12]Roy, A. R.; Maji, P. K.: A fuzzy soft set theoretic approach to decision making problems, Comput. appl. Math. 203, 412-418 (2007) · Zbl 1128.90536 · doi:10.1016/j.cam.2006.04.008